Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23100083-6    https://doi.org/10.11896/cldb.23100083
  金属与金属基复合材料 |
含铒近α型高温钛合金中α相的动/静态球化机制
王同波1,2,*, 李伯龙2, 亓鹏1,2, 王云鹏1, 莫永达1, 娄花芬1
1 中铝科学技术研究院有限公司,北京 102209
2 北京工业大学材料科学与工程学院,北京 100124
Dynamic and Static Spherical Mechanisms of α Phase in Near α Titanium Alloy with Erbium
WANG Tongbo1,2,*, LI Bolong2, QI Peng1,2, WANG Yunpeng1, MO Yongda1, LOU Huafen1
1 Chinalco Research Institute of Science and Technology Co., Ltd., Beijing 102209, China
2 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 31546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作围绕近α型高温钛合金α相球化过程涉及的科学问题开展研究,以探索出具有随机取向的α相组织模式的调控机理。以含铒高温钛合金为研究对象,多尺度研究阐明α相在热、力耦合条件下的组织演化规律,揭示动、静态球化所制备的含铒高温钛合金的组织模式,提炼出近α型高温钛合金α相动/静态球化机制。研究表明,在热力耦合条件下,αp的球化机制由渐进式取向差所控制的动态再结晶机制主导;在单纯热的作用下,αp相的静态球化由扩散控制的β插入模型主导,都会形成取向随机分布的等轴αp相。在880 ℃、0.001 s-1热力协同变形过程中,变形初期以位错的激发及其与界面的交互作用为主,所激发的滑移位错的伯氏矢量为1/3[2112],形成位错界面等亚结构;随着应变的增大,晶粒间取向差增大,形成完全动态再结晶组织。静态球化后,组织为等轴αp晶粒和β转变组织并存的组织模式。β转变组织中存在β相和二次αs板条,且二次αs板条的宽度在30 nm左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王同波
李伯龙
亓鹏
王云鹏
莫永达
娄花芬
关键词:  近α高温钛合金  α相  动态再结晶  球化    
Abstract: The scientific issue was investigated for the spherical mechanisms of α phase in near α titanium alloy with erbium, aimed to preparate the α phase with random crystal orientation. A novel high temperature titanium alloy with erbium was studied to clarify the micro-structural evolution on the thermal mechanical conditions. Meanwhile, the micro-structure model was established to clarify the dynamic and static spherical mechanisms of α phase. During the thermal-mechanical deformation, the spherical mechanism of lamellar α colony was the continuous dynamic recrystallization, controlled by the mechanical rotation of the sub-grain followed by dislocation climbing and annihilation by diffusion. During the thermal process, the static spheroidization was developed on basics of the β inserted model. During the thermal-mechanical deformation, the sub-structure was induced by the interaction between the slipping dislocation with b of 1/3[2112]. And then, the mis-orientation was increased to develop to the dynamic recrystallization. During the thermal process, the static spherical process, the equiaxial αp grains and retained β transformed microstructures were prepared. Furthermore, retained β transformed microstructures consisted of β phase and secondary αs lamellar with the thickness of 30 nm.
Key words:  near α titanium alloy    α phase    dynamic recrystallization    spherical
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG146.1+1  
基金资助: 国家自然科学基金(91860113);北京市自然科学基金面上项目(2162004);中铝集团战略前沿技术项目(ZL2218)
通讯作者:  *王同波,中铝科学技术研究院有限公司工程师。2019年7月毕业于北京工业大学材料科学与工程专业,获得工学博士学位。同年加入中铝集团工作至今,擅长钛合金、铜合金、锗等有色金属材料的晶体学理论及其调控技术,主持中铝集团重大专项、中铜重点项目2项,参与国家、省部级项目共计5项,获得国家授权发明专利4项,发表SCI/EI论文35篇,获得中国有色金属工业科学技术奖一等奖1项。wtb083@163.com   
引用本文:    
王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
WANG Tongbo, LI Bolong, QI Peng, WANG Yunpeng, MO Yongda, LOU Huafen. Dynamic and Static Spherical Mechanisms of α Phase in Near α Titanium Alloy with Erbium. Materials Reports, 2024, 38(17): 23100083-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100083  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23100083
1 Huang X, Zhu Z S, Wang H H. Advanced aeronantical titanium alloys and applications, Defense Industry Press, China, 2012(in Chinese).
黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用, 国防工业出版社, 2012.
2 Huang X, Li Z X, Huang H. Materials China, 2011, 30(6), 21(in Chinese).
黄旭, 李臻熙, 黄浩. 中国材料进展, 2011, 30(6), 21.
3 Cai J M, Mi G B, Gao F, et al. Journal of Materials Engineering, 2016, 44(8), 1(in Chinese).
蔡建明, 弭光宝, 高帆, 等. 材料工程, 2016, 44(8), 1.
4 Lapin J. Scripta Materialia, 2004, 50(2), 261.
5 Wang Q J, Liu J R, Yang R. Journal of Aeronautical Materials, 2014, 34(4), 1(in Chinese).
王清江, 刘建荣, 杨锐. 航空材料学报, 2014, 34(4), 1.
6 Lee D H, Nama S W, Choe S J. Materials Science and Engineering A, 2000, 291(1-2) 60.
7 Zhao Z L, Li H, Fu M W, et al. Journal of Alloys and Compounds, 2014, 617, 525.
8 Ma F C, Lu W J, Qin J N, et al. Materials Science and Engineering A, 2006, 416(1-2), 59.
9 Han Y F, Zeng W D, Qi Y L, et al. Materials Science and Engineering A, 2011, 528(29-30), 8410.
10 Stefansson N, Semiatin S L. Metallurgical and Materials Transactions A, 2003, 34A(3), 691.
11 Seshacharyulu T, Medeiros S C, Morgan J T. Materials Science and Engineering A, 2000, 279(1-2), 289.
12 Banerjee D, Williams J C. Acta Materialia, 2013, 61(3), 844.
13 Wang T B, Li B L, Wang Z Q, et al. Materials Science & Engineering A, 2018, 731, 12.
14 Wang T B, Li B L, Wang Z Q, et al. Journal of Materials Research, 2017, 32, 1517.
15 Germain L, Gey N, Humbert M, et al. Acta Materialia, 2005, 53(13), 3535.
16 Germain L, Gey N, Humbert M, et al. Acta Materialia, 2008, 56 (16), 4298.
17 Zhao Z B, Wang Q J, Hu Q M, et al. Acta Materialia, 2017, 126, 372.
18 Zhao Z B, Wang Q J, Liu J R, et al. Metallurgical and Materials Transactions A, 2018, 49A, 4937.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[5] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[6] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[7] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[8] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[9] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[10] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[11] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[12] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[13] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[14] 杨光, 田普建, 葛正浩, 王义飞, 杨肖肖, 刘洁, 刘延辉, 宋文杰. β型γ-TiAl合金中硼化物的取向及其对α相的影响[J]. 材料导报, 2020, 34(8): 8113-8118.
[15] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed