Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20120264-5    https://doi.org/10.11896/cldb.20120264
  金属与金属基复合材料 |
中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究
张鸿飞1,2, 丁雨田1,2, 雷健1,2, 沈悦1,2, 陈建军1,2, 高钰璧1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Research on Microstructure and Properties of Mg-1.5Zn-0.2Ca Alloy Extruded at Moderate Temperature
ZHANG Hongfei1,2, DING Yutian1,2, LEI Jian1,2, SHEN Yue1,2, CHEN Jianjun1,2, GAO Yubi1,2
1 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 晶粒细化可以有效改善镁合金的力学性能。基于此,以Mg-1.5Zn-0.2Ca合金作为研究对象,通过中低温挤压变形工艺对Mg-1.5Zn-0.2Ca合金组织进行调控,进而对其变形后的组织及性能进行分析。结果表明:随着挤压温度降低,Mg-1.5Zn-0.2Ca合金的塑性变形机制发生转变,变形后的晶粒尺寸逐渐减小,综合力学性能增强。280 ℃挤压变形时,合金以基面滑移及孪生协调变形为主,动态再结晶后的平均晶粒尺寸约为5.3 μm,此时合金的屈服强度为95 MPa,抗拉强度为186 MPa,延伸率为22%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鸿飞
丁雨田
雷健
沈悦
陈建军
高钰璧
关键词:  Mg-1.5Zn-0.2Ca合金  挤压  动态再结晶  晶粒细化    
Abstract: Grain refinement can effectively improve the mechanical properties of magnesium alloy. Based on this, study was conducted on the Mg-1.5Zn-0.2Ca alloy and the microstructure of its alloys was regulated by moderate temperature extrusion process. The analysis of extruded alloy showed that, with decreasing of extrusion temperature, the deformation model of Mg-1.5Zn-0.2Ca alloy gradually changes, at the same time the grain size of extruded alloys also decreases, and the extruded alloys exhibit much better mechanical properties. The alloy is dominated by combination of basal slip and twining when extruded at 280 ℃, gaining the dynamic recrystallized (DRXed) grains for average size of 5.3 μm, while the yield strength, ultimate tensile strength and elongation are 95 MPa, 186 MPa and 22%, respectively.
Key words:  Mg-1.5Zn-0.2Ca alloy    extrusion    dynamic recrystallization    grain refinement
发布日期:  2022-02-10
ZTFLH:  TG379  
基金资助: 兰州理工大学红柳一流学科建设计划项目
通讯作者:  dingyt@lut.edu.cn   
作者简介:  张鸿飞,兰州理工大学博士研究生,2018年毕业于兰州理工大学,获得材料成型及控制工程专业工学学士学位。2018年就读于兰州理工大学,攻读材料学专业博士学位,师从丁雨田教授,研究方向为生物医用镁合金。
丁雨田,兰州理工大学教授,博士研究生导师,甘肃省第一层次领军人才。2016年获得冶金有色工业科技进步一等奖。1983年西安交通大学铸造专业本科毕业,获工学学士学位;1986年西安交通大学铸造专业研究生毕业,获工学硕士学位,2005年兰州理工大学博士研究生毕业,获工学博士学位。先后主持完成国家自然科学基金项目、甘肃省科技重大专项项目、甘肃省科技攻关项目、甘肃省自然科学基金项目以及企业委托开发的科研项目等40余项。现主要研究方向为生物医用镁合金、镍基变形高温合金、3D打印用镍基高温合金粉末制备及镍基高温合金素化。在国内外学术刊物及学术会议上发表论文270余篇。
引用本文:    
张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
ZHANG Hongfei, DING Yutian, LEI Jian, SHEN Yue, CHEN Jianjun, GAO Yubi. Research on Microstructure and Properties of Mg-1.5Zn-0.2Ca Alloy Extruded at Moderate Temperature. Materials Reports, 2022, 36(3): 20120264-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120264  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20120264
1 Chen Z H. Wrought magnesium alloy, Chemical Industry Press, China, 2005 (in Chinese).
陈振华.变形镁合金, 化学工业出版社, 2005.
2 Mordike B L, Ebert T. Materials Science and Engineering A, 2001, 302, 37.
3 Yin L, Huang H, Yuan G Y, et al. Materials China, 2019, 38(2), 126 (in Chinese).
尹林, 黄华, 袁广银, 等.中国材料进展, 2019, 38(2), 126.
4 Zheng Y F, Wu Y H. Acta Metallurgica Sinica, 2017, 53(3), 257 (in Chinese).
郑玉峰, 吴远浩.金属学报, 2017, 53(3), 257.
5 Zheng Y F, Liu J N. Materials China, 2020, 39(2), 92 (in Chinese).
郑玉峰, 刘嘉宁.中国材料进展, 2020, 39(2), 92.
6 Wang Y Y, Ma A B, Li Y H, et al. Journal of Functional Materials, 2015, 46(S2), 32 (in Chinese).
汪园园, 马爱斌, 李玉华, 等.功能材料, 2015, 46(S2), 32.
7 Tu T, Chen X H, Chen J, et al. Acta Metallurgica Sinica, 2019, 32(1), 23.
8 Sun Y, Kong M X, Jiao X H. Transactions of Nonferrous Metals Society of China, 2011, 21, 252.
9 Yang C H. Research on microstructure and mechanical properties of Mg-Zn-Ca magnesium alloy.Master's Thesis, Shenyang University of Techno-logy, China, 2013 (in Chinese).
杨春海. Mg-Zn-Ca合金组织与性能分析. 硕士学位论文, 沈阳工业大学, 2013.
10 Yu H H, Xin Y C, Wang M Y, et al. Journal of Materials Science and Technology, 2018, 34(2), 248.
11 Yan K, Sun J P, Bai J, et al. Materials Science and Engineering A, 2019, 739, 513.
12 Peng P, Tang A T, She J, et al. Materials Reports:Review Papers, 2019, 33(5), 1526 (in Chinese).
彭鹏, 汤爱涛, 佘加, 等.材料导报:综述篇,2019, 33(5), 1526.
13 Hui Y, Sung H P, Bong S Y. Materials Science and Engineering A, 2014, 610, 445.
14 Li R G, Li H R, Zhao D Y, et al. Materials Science and Engineering A, 2020, 780, 139193.
15 Cui Z Q, Liu B X. Metallurgy and heat treatment theory, Harbin Institute of Technology Press, China, 2004 (in Chinese).
崔忠圻, 刘北兴.金属学与热处理原理, 哈尔滨工业大学出版社, 2004.
16 Peng J, Peng Y, Han W, et al. Journal of Materials Engineering, 2015, 43(3), 23 (in Chinese).
彭建, 彭毅, 韩韡, 等.材料工程, 2015, 43(3), 23.
17 Pulido-González N, Torres B, Rodrigo P, et al. Journal of Magnesium and Alloys, 2020, 8(2), 510.
18 Zhang E L, Yang L. Materials Science and Engineering A, 2008, 497, 111.
19 Li W J, Deng K K, Zhang X, et al. Materials Science and Engineering A, 2016, 677, 367.
20 Woo W, Huang E W, Yeh J W, et al. Intermetallics, 2015, 62, 1.
21 Wang H, Clausen B, Tomé C N, et al. Acta Materialia, 2013, 61, 1179.
22 Huang S Y, Brown D W, Clausen B, et al. Metallurgical and Materials Transactions A, 2012, 43(5), 1497.
23 Li X Y, Li X L, Guo F, et al. Transactions of Materials and Heat Treatment, 2020, 41(9), 17 (in Chinese).
李晓燕, 李兴林, 郭非, 等.材料热处理学报, 2020, 41(9), 17.
24 Liu X, Zhu B W, Li L X, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(2), 288 (in Chinese).
刘筱, 朱必武, 李落星, 等.中国有色金属学报, 2016, 26(2), 288.
25 Wang X Y, Chen J Z, Wang Z J, et al. Nonferrous Metals Processing, 2018, 47(3), 10 (in Chinese).
王雪英, 陈家忠, 王梓杰, 等. 有色金属加工, 2018, 47(3), 10.
26 Zhang M Q, Feng Y, Zhang J H, et al. Journal of Materials Science and Technology, 2019, 35, 2365.
27 Mao W M, Yang P, Chen L. The principle of texture analyses and texting technology of material, Metallurgical Industry Press, China, 2008 (in Chinese).
毛卫民, 杨平, 陈冷.材料织构分析原理与检测技术, 冶金工业出版社, 2008.
28 Hu G X, Cai X, Rong Y H. Fundamental of materials science, Shanghai Jiao Tong University Press, China, 2010 (in Chinese).
胡赓祥, 蔡珣, 戎咏华.材料科学基础, 上海交通大学出版社, 2010.
29 Chen X P, Shang D, Xiao R, et al. Transactions of Nonferrous Metals Society of China, 2010, 20, 589.
30 Zhao D Q, Zhou J X, Liu Y T, et al. Acta Metallurgica Sinica, 2014, 50(1), 41 (in Chinese).
赵东清, 周吉学, 刘运腾, 等.金属学报, 2014, 50(1), 41.
31 Chi Y Q, Zheng M Y, Xu C, et al. Materials Science and Engineering A, 2013, 565, 112.
32 Liu Q. Acta Metallurgica Sinica, 2010, 46(11), 1458 (in Chinese).
刘庆.金属学报, 2010, 46(11), 1458.
33 Guo Q, Yan H G, Chen Z H, et al. Acta Metallurgica Sinica, 2007, 43(6), 619 (in Chinese).
郭强, 严红革, 陈振华, 等.金属学报, 2007, 43(6), 619.
34 Yang Y. Principles of plastic deformationin metal processing, Chemical Industry Press, China, 2016 (in Chinese).
杨扬.金属塑性加工原理, 化学工业出版社, 2016.
[1] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[2] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[3] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[4] 马琳, 宋雨键, 崔庆贺, 石瑶, 姬书得, 李壮. 搅拌摩擦加工工艺及水冷对A356铸铝合金晶粒细化作用及变形控制[J]. 材料导报, 2021, 35(24): 24122-24127.
[5] 权国政, 温志航, 沈力, 马遥遥, 张普, 张钰清, 詹宗杨. 镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J]. 材料导报, 2021, 35(18): 18124-18130.
[6] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[7] 姜坤, 刘桂亮, 赵凯, 杨化冰, 孙谦谦, 刘相法. 抗Si“中毒”AlTiC-B晶种合金对ZL114铝合金组织和力学性能的影响[J]. 材料导报, 2021, 35(16): 16076-16080.
[8] 赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
[9] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[10] 刘松浩, 司家勇, 陈龙. 挤压态FGH4096合金室温变形及临界晶粒长大研究[J]. 材料导报, 2021, 35(14): 14107-14114.
[11] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[12] 陈志强, 贾锦玉, 胡文鑫, 王玮, 刘峰. 铝合金稀土复合细化剂的研究进展[J]. 材料导报, 2020, 34(Z2): 365-370.
[13] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
[14] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[15] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed