Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14079-14083    https://doi.org/10.11896/cldb.20040121
  金属与金属基复合材料 |
消除7136铝合金固溶热处理粗晶环的新方法:应变固溶
赵帆, 何颖, 张志豪*
北京科技大学新材料技术研究院,材料先进制备技术教育部重点实验室,北京 100083
A New Method for Eliminating Peripheral Coarse Grain Structure Formed in the Solution Treatment of 7136 Aluminum Alloy: Strain Solution
ZHAO Fan, HE Ying, ZHANG Zhihao*
Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固溶热处理粗晶环的新方法——应变固溶,即在进行双级固溶(450 ℃/2 h + 470 ℃/4 h)前,在420 ℃时对试样施加拉伸应变并保温2 h。研究发现,随着应变固溶时应变量的增大,固溶处理后铝合金粗晶环深度逐渐减小,当应变量达到4.6%时,粗晶环完全消除。这一方法的机制是利用应变固溶在较低温度时消耗并释放形变储能,从而抑制固溶热处理过程中Al3Zr相的熟化,调控铝合金的再结晶行为。TEM和EBSD分析显示,固溶热处理前经历了应变量为4.6%的应变固溶的样品,其边部再结晶比例仅为49.5%,远低于未经应变固溶直接进行热处理的样品(76.4%),并且再结晶晶粒正常长大形成细小等轴晶粒,使粗晶环得以消除。另外,应变固溶处理会导致型材峰值时效后的硬度有所降低,但降幅不大;同时试样心部仍保持较多的[111]晶向,即平行于挤压方向的织构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵帆
何颖
张志豪
关键词:  粗晶环  组织缺陷  7系铝合金  挤压  固溶  再结晶    
Abstract: The peripheral coarse grain (PCG) structure is a kind of typical defect in the extruded high strength aluminum alloys. A new method which called strain solution, is capable of eliminating the PCG structure formed in the solution treatment of 7136 aluminum alloy. Before two-stage solution (450 ℃/2 h + 470 ℃/4 h), the alloy samples were deformed to introduce various tensile strains at 420 ℃ and then kept at the same temperature for 2 h. It can be found in the two-stage solution-treated sample that the depth of PCG structure varied inversely with tensile strain introduced during strain solution, and that PGG could be eliminated when the strain introduced reached 4.6%. The strain solution consumes and releases the stored deformation energy at a relatively low temperature, and consequently, suppresses the coarsening of particles at the edge of extrusion during the two-stage solution treatment. As a result, the recrystallization behavior is regulated. This mechanism was supported by TEM and EBSD measurements of the sample which experienced strain-solution (4.6% strain) treatment prior to two-stage solution treatment, and the sample which was directly two-stage solution-treated: the former had a recrystallization volume fraction at the edge of 49.5%, fairly lower than that of the latter (76.4%), and also was spared from the generation of PGG structure for the growth of the recrystallized grains which formed fine equiaxial grains. In addition, the introduction of strain-solution treatment led to a slight reduction of material hardness, while a substantial amount of the [111]-oriented (i.e. parallel to the extrusion direction) grains were retained at the center of the sample.
Key words:  peripheral coarse grain structure    microstructure defect    7xxx series aluminum alloy    extrusion    solution    recrystallization
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG379  
基金资助: 佛山市核心技术攻关项目(1920001000409);NSFC-辽宁联合基金(U1708251)
通讯作者:  * ntzzh2279@163.com   
作者简介:  赵帆,北京科技大学新材料技术研究院,讲师。2019年6月毕业于北京科技大学材料科学与工程专业,获工学博士学位。同年加入北京科技大学新材料技术研究院工作至今,主要从事先进金属材料加工过程数值模拟与组织性能调控、基于大数据和机器学习的材料设计与制备等领域的研究。在国内外重要期刊发表学术论文20余篇。
张志豪,北京科技大学新材料技术研究院,教授。2005年3月毕业于北京科技大学材料加工工程专业,获工学博士学位,同年留校工作。主要从事先进材料挤压理论与技术、高硅电工钢控制凝固与控制成形、金属基复合材料制备与加工等领域的研究。在国内外重要期刊发表学术论文50余篇,授权国家发明专利10余项。2010年和2012年分别获中国有色金属工业科学技术一等奖。
引用本文:    
赵帆, 何颖, 张志豪. 消除7136铝合金固溶热处理粗晶环的新方法:应变固溶[J]. 材料导报, 2021, 35(14): 14079-14083.
ZHAO Fan, HE Ying, ZHANG Zhihao. A New Method for Eliminating Peripheral Coarse Grain Structure Formed in the Solution Treatment of 7136 Aluminum Alloy: Strain Solution. Materials Reports, 2021, 35(14): 14079-14083.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040121  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14079
1 Xie J X, Liu J A. Theory and technology of metals extrusion, Metallurgical Industry Press, China, 2012 (in Chinese).
谢建新, 刘静安. 金属挤压理论与技术, 冶金工业出版社, 2012.
2 Gourdet S, Montheillet F. Materials Science and Engineering A, 2000, 283, 274.
3 Wang P T, Geertruyden W H V, Misiolek W Z. In: Metallurgical Mode-ling for Aluminum Alloys-Proceedings from Materials Solutions Conference 2003: 1st International Symposium on Metallurgical Modeling for Aluminum Alloys. Ohio, 2003, pp. 199.
4 Schikorra M, Donati L, Tomesani L, et al. Journal of Materials Proces-sing and Technology, 2008, 201, 156.
5 Misiolek W Z. Journal of Materials Processing and Technology, 1996, 60, 117.
6 Kikuchi S, Yamazaki H, Otsuka T. Journal of Materials Processing and Technology, 1993, 38, 689.
7 Zhao Y, Song B, Pei J, et al. Journal of Materials Processing and Technology, 2013, 213, 1855.
8 Eivani A R, Zhou J. Journal of Alloys and Compounds, 2017, 725, 41.
9 Zhou J, Eivani A R. In: Proceedings of the Fifth International Aluminum Profile Technology Seminar. Guangzhou, 2013, pp. 746.
10 Robinson J, Liu T, Khan A, et al. Journal of Materials Processing and Technology, 2009, 209, 3069.
11 Kim J H, Kim J H, Yeom J T, et al. Journal of Materials Processing and Technology, 2007, 187, 635.
12 Wen F, Li T. Light Alloy Fabrication Technology, 2003, 31(3), 33 (in Chinese).
文方, 李铁. 轻合金加工技术, 2003, 31(3), 33.
13 Wang D W, Zhang Y F, Lin S, et al. Light Alloy Fabrication Technology, 2016, 44(9), 41 (in Chinese).
王大伟, 张艳飞, 林森, 等. 轻合金加工技术, 2016, 44(9), 41.
14 Wang Y L, Tian W Y. Light Alloy Fabrication Technology, 2012, 40(8), 49 (in Chinese).
王奕雷, 田旺源. 轻合金加工技术, 2012, 40(8), 49.
15 Xiang J, Xie S S, Li J, et al. Hot Working Technology, 2016, 45(20), 200 (in Chinese).
向晶, 谢尚昇, 李剑, 等. 热加工工艺, 2016, 45(20), 200.
16 Zedalis M S, Fine M E. Metallurgical Transactions A, 1986, 17A, 2187.
17 Jazaeri H, Humphreys F J. Acta Materialia, 2004, 52, 3239.
18 Jazaeri H, Humphreys F J. Acta Materialia, 2004, 52, 3251.
19 Geertruyden W H V, Browne H M, Misiolek W Z, et al. Metallurgical and Materials Transactions A, 2005, 36, 1049.
20 Mcqueen H J, Blum W. Materials Science and Engineering A, 2000, 290, 95.
21 Mcqueen H J, Knustad O, Ryum N, et al. Scripta Metallurgica, 1985, 19, 73.
22 Gourdet S, Montheillet F. Acta Materialia, 2003, 51, 2685.
23 Eivani A R, Zhou J, Duszczyk J. Philosophical Magazine, 2016, 96, 1188.
24 Li L, Zhou J, Duszczyk J. Journal of Materials Processing and Technology, 2004, 145, 360.
25 Chanda T, Zhou J, Kowalski L, et al. Scripta Materialia, 1999, 41, 195.
26 Eivani A R, Zhou J, Duszczyk J. Journal of Materials Science and Technology, 2013, 29, 517.
[1] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[2] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[3] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[4] 万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰. Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算[J]. 材料导报, 2021, 35(2): 2139-2144.
[5] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[6] 刘松浩, 司家勇, 陈龙. 挤压态FGH4096合金室温变形及临界晶粒长大研究[J]. 材料导报, 2021, 35(14): 14107-14114.
[7] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[8] 沈艳, 刘丹丹, 宋世金, 唐艳艳, 胡一丁, 武浩荣, 虞澜. 透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J]. 材料导报, 2021, 35(10): 10008-10012.
[9] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[10] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[11] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
[12] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[13] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[14] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[15] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed