Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2139-2144    https://doi.org/10.11896/cldb.19090184
  金属与金属基复合材料 |
Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算
万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰
西南交通大学材料科学与工程学院,成都 610031
First-Principles Studies on Electronic Structure and Mechanical Properties and Phase Diagram Calculation of Al-Zn-Mg Alloy
WAN Yangjie, QIAN Xiaoying, ZENG Ying, SUN Kexin, ZHANG Yingbo, QUAN Gaofeng
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 4141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过热力学计算得到了Al-Zn-Mg合金室温平衡相图,计算结果表明,Al-xZn-yMg(x=5.0%~6.5%;y=1.5%~3.0%,均为质量分数)合金室温下稳定存在的第二相为MgZn2、Al2Mg3Zn3、Mg32(Al,Zn)49。采用基于密度泛函理论的第一性原理赝势平面波方法,计算研究了三种相的生成焓和结合能。计算结果表明,MgZn2具有较弱的合金化能力及相结构稳定性。根据合金中第二相的含量,筛选出每种第二相含量最多的三个合金成分为Al-6.0Zn-2.9Mg、Al-6.5Zn-1.7Mg和Al-6.5Zn-2.5Mg,构建了Al37Zn1Mg2、Al49Zn2Mg1和Al34Zn1Mg1三个固溶体超胞,计算研究了三者的弹性常数、能带结构和电子态密度等本征特性。计算结果表明:Al49Zn2Mg1的强度和塑性最好;Al37Zn1Mg2的抗剪切能力和刚度最好;Al49Zn2Mg1呈韧性,而Al34Zn1Mg1和Al37Zn1Mg2均呈脆性。能带结构和电子态密度计算结果表明三者均具有金属键,存在金属导电性,Al37Zn1Mg2的共价性强于Al49Zn2Mg1和Al34Zn1Mg1,Al37Zn1Mg2结构最稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万杨杰
钱晓英
曾迎
孙可欣
张英波
权高峰
关键词:  相图  第二相  固溶体  生成焓  结合能  本征特性    
Abstract: The room temperature equilibrium phase diagram of Al-Zn-Mg alloy was obtained by thermodynamic calculation. The calculated results showed that MgZn2, Al2Mg3Zn3 and Mg32(Al,Zn)49 are the main second phases in Al-xZn-yMg (x=5.0%—6.5%;y=1.5%—3.0%) alloys. The first-principles pseudopotential plane wave method based on density functional theory (DFT) was used to calculate the formation enthalpy and cohesive energy of the three phases. The calculation results show that MgZn2 has weak alloying ability and phase structure stability. According to the content of the second phase in the alloys, the three alloy compositions with the highest content of each second phase were selected as Al-6.0Zn-2.9Mg, Al-6.5Zn-1.7Mg and Al-6.5Zn-2.5Mg. Consequently, 3 solid solution supercells models of Al37Zn1Mg2, Al49-Zn2Mg1 and Al34Zn1Mg1 were constructed and investigated. The intrinsic properties, elastic constant, band structure and electronic density of state were calculated. The calculated results showed that Al49Zn2Mg1 had the best strength and plasticity; Al37Zn1Mg2 had the best shear resis-tance and stiffness; Al49Zn2Mg1 was tough, while Al34Zn1Mg1 and Al37Zn1Mg2 were brittle. The results of band structure and density of states indicated that all of them had metal bonds and metal conductivity. The covalent bond of Al37Zn1Mg2 was stronger than that of Al49Zn2Mg1 and Al34-Zn1Mg1, and the structure of Al37Zn1Mg2 was the most stable.
Key words:  phase diagram    second phases    solid solutions    formation enthalpy    cohesive energy    intrinsic properties
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(U153029;11972219)
通讯作者:  clzy@swjtu.edu.cn   
作者简介:  万杨杰,男,1995年生,西南交通大学硕士研究生。主要研究方向为轻合金材料设计与制备及第一性原理计算。
曾迎,博士,西南交通大学材料科学与工程学院讲师。主要研究方向为轻金属材料晶粒细化理论以及合金化改善镁合金板材成形性能的研究。
引用本文:    
万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰. Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算[J]. 材料导报, 2021, 35(2): 2139-2144.
WAN Yangjie, QIAN Xiaoying, ZENG Ying, SUN Kexin, ZHANG Yingbo, QUAN Gaofeng. First-Principles Studies on Electronic Structure and Mechanical Properties and Phase Diagram Calculation of Al-Zn-Mg Alloy. Materials Reports, 2021, 35(2): 2139-2144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090184  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2139
1 Song R G.Materials Reports, 2000, 14(1), 20(in Chinese).
宋仁国.材料导报, 2000, 14(1), 20.
2 Wang T, Yin Z M.Chinese Journal of Rare Metals, 2006, 30(2), 197(in Chinese).
王涛, 尹志民.稀有金属, 2006, 30(2), 197.
3 Zhang X M, Deng Y L, Zhang Y.Acta Metallurgica Sinica, 2015, 51(3),257(in Chinese).
张新明, 邓运来, 张勇.金属学报, 2015, 51(3), 257.
4 Xiao Y Q.Aluminum processing technology practical manual, Metallurgical Industry Press, China, 2005(in Chinese).
肖亚庆.铝加工技术实用手册, 冶金工业出版社, 2005.
5 Fan H T. Effect of alloying elements and heat treatment process on microstructure and mechanical properties of Al-Zn-Mg-Cu aluminum alloy. Master's Thesis, Central South University, China, 2004(in Chinese).
范洪涛. 合金元素与热处理工艺对Al-Zn-Mg-Cu系铝合金的组织与力学性能影响的研究. 中南大学, 2004.
6 Payne M C, Teter M P, Allen D C, et al.Reviews of Modern Physics, 1992, 64(4), 1045.
7 Chadi D J.Physical Review B Condensed Matter, 1977, 16(4), 5188.
8 Marlo A M.Physical Review B, 2000, 62(4), 2899.
9 Pfrommer B G, Côté M, Louie S G, et al. Journal of Computational Physics, 1997, 131(1), 233.
10 Hammer B, Hansen L B, Nørskov J K.Physical Review B, 1999, 59(11), 7413.
11 Pierre V. in: Inorganic Solid Phases, Springer Materials (online database), Heidelberg, ed., Springer, Springer Materials.
12 Takata N, Okano T, Suzuki A, et al.Intermetallics, 2018, 95, 48.
13 Mondal C, Mukhopadhyay A K.Materials Science and Engineering: A, 2005, 391, 367.
14 Huang K.Solid state physics, Higher Education Press, China, 1985(in Chinese).
黄昆.固体物理, 高等教育出版社, 1985.
15 Mao P L, Yu B, Liu Z, et al.Transactions of Nonferrous Metals Society of China, 2014, 24, 2920.
16 Wu M M, Li W, Tang B Y, et al.Journal of Alloys & Compounds, 2010, 506(1), 412.
17 Li C, Hoe J L, Wu P.Journal of Physics and Chemistry of Solids, 2003, 64(2),201.
18 Lu Z Q, Jiang S H, He J Y, et al.Acta Metallurgica Sinica, 2016, 52(10),1183(in Chinese).
吕昭平, 蒋虽合, 何骏阳, 等.金属学报, 2016, 52(10), 1183.
19 Ling B, Zhong B W.Journal of Materials Engineering,1992(S1), 123(in Chinese).
凌斌, 钟炳文.材料工程, 1992(S1), 123.
20 Zhu Z F, Li H, Shi C L, et al.Transactions of Materials and Heat Treatment, 2018, 39(7), 21(in Chinese).
祝贞凤, 李辉, 史春丽, 等.材料热处理学报, 2018, 39(7), 21.
21 Deng Y L, Zhou Y, Zhao F J, et al.Hot Working Technology, 2012, 41(24), 1(in Chinese).
邓运来, 周洋, 赵凤景, 等.热加工工艺, 2012, 41(24), 1.
22 Wang J, Zhang Y A, Fan Y Q, et al.Chinese Journal of Rare Metals, 2016, 40(11), 1081(in Chinese).
王杰, 张永安, 范云强, 等.稀有金属, 2016, 40(11), 1081.
23 Yang L, Tao X C, Hu B, et al.Heat Treatment of Metals, 2017, 42(1), 44(in Chinese).
杨林, 陶欣慈, 胡斌, 等.金属热处理, 2017, 42(1), 44.
24 Zhang Y Y. The control of recrystallization of A1-Zn-Mg-Cu alloys and effects of sub-grain boundaries on the precipitation of MgZn2 phase particles. Master's thesis, Central South University, China, 2013(in Chinese).
张云崖. Al-Zn-Mg-Cu合金再结晶的控制及亚晶界对MgZn2粒子析出的影响. 硕士学位论文,中南大学, 2013.
25 Zhang Y Y, Deng Y L, Wang L, et al.Acta Metallurgica Sinica, 2011, 47(10), 1270(in Chinese).
张云崖, 邓运来, 万里, 等. 金属学报, 2011, 47(10), 1270.
26 Dong Q, Pan L W, Zhang S N, et al. Materials Reports, 2017, 31(S2), 449(in Chinese).
董强, 潘利文, 张赛楠, 等.材料导报, 2017, 31(专辑30), 449.
27 Wan Y J, Qiao X Y, Zeng Y, et al. Transactions of Materials and Heat Treatment, 2019, 40(10), 158(in Chinese).
万杨杰, 钱晓英, 曾迎, 等. 材料热处理学报, 2019, 40(10), 158.
28 Hill R.Proceedings of the Physical Society. Section A, 1952, 65(5), 349.
29 Born M, Huang K.American Journal of Physics, 1954, 39(2), 113.
30 Li Y F, Gao Y M, Xiao B, et al.Journal of Alloys & Compounds, 2010, 502(1), 28.
31 Pugh S F.Philosophical Magazine, 2009, 45(367), 823.
32 Zhou D W, Liu J S, Peng P.Transactions of Nonferrous Metals Society of China, 2011, 21(12), 2677.
33 Zhou W, Sahara R, Tsuchiya K. Journal of Alloys & Compounds, 2017, 727, 579.
34 Hu Q M, Yang R, Xu D S, et al.Physical Review B, 2003, 68(5), 54.
35 Huang C, Shao H, Ma Y, et al.International Journal of Modern Physics B, 2018, 32(9), 185.
[1] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[2] 谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
[3] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[4] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[5] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[6] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[7] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[8] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[9] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[10] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[11] 王翠萍, 牛泽明, 潘云炜, 陈悦超, 杨双, 郭毅慧, 卢勇, 韩佳甲, 刘兴军. Co-Ni-W三元系相图的实验测定与热力学计算[J]. 材料导报, 2019, 33(20): 3460-3466.
[12] 程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
[13] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[14] 何培, 姚伟志, 吕建明, 高博, 李先容. ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 34-40.
[15] 赵明杰, 门传玲, 曹军, 张自元. 悬浮石墨烯的制备、性能及应用研究*[J]. CLDB, 2017, 31(9): 57-63.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed