Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17082-17088    https://doi.org/10.11896/cldb.20030074
  高熵合金 |
增材制造技术制备高熵合金的研究现状及展望
马旻昱1, 连勇1,2, 张津1,2
1 北京科技大学新材料技术研究院,北京 100083
2 北京市腐蚀/磨蚀与表面技术重点实验室,北京 100083
Review and Perspective on High Entropy Alloys Prepared by Additive Manufacturing
MA Minyu1, LIAN Yong1,2, ZHANG Jin1,2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory for Corrosion Erosion and Surface Technology, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金是近年来发现的一种新型合金,因其独特的设计理念、组织结构以及优异的性能,短短数年内获得了大量科研工作者的关注。由于高熵合金高成本的特点,采用传统制备工艺制备高熵合金结构件造成了一定浪费,尤其是在高精密复杂零部件方面。而增材制造是根据零件的三维数据直接制造出实体零件的技术,能够在很大程度上解决高熵合金在复杂零部件方面制备浪费的问题。同时,增材制造技术具有精确制造、快速凝固的特点,比传统制备工艺更能够保证合金的组织均匀性,也更有利于合金的组织细化,可以进一步发挥高熵合金性能的潜力。然而,高熵合金和增材制造都属于发展时间较短的新型研究方向,针对增材制造高熵合金的研究也尚处于起步阶段。本文介绍了高熵合金最常使用的几种增材制造技术,重点阐述了用增材制造技术制备的高熵合金的组织演变规律、力学性能、耐腐蚀性这几方面的研究进展,并对高熵合金复合材料的研究现状进行了归纳,同时对增材制造高熵合金的进展及优缺点进行了总结,并对增材制造技术制备高熵合金的研究提供了一些思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马旻昱
连勇
张津
关键词:  高熵合金  增材制造  固溶体  细化晶粒  力学性能  耐腐蚀性    
Abstract: Since the high entropy alloys were discovered in recent years, they have attracted enormous attention of researchers due to their unique design concept, microstructure and excellent performance. While the high price of high entropy alloys, the application of traditional manufacture cause the waste in prepartion, especially in the preparation of complex parts. Additive manufacturing is a novel technology that directly manufactures solid parts from three-dimensional data of parts, which can largely solve the preparation of high entropy alloys in complex parts. Moreover, the additive manufacturing technology has the characteristics of precise manufacturing and rapid solidification, which can ensure the uniformity of the alloy's structure than the traditional manufacture process, and is also more conducive to the refinement of the alloys' grains. However, the high entropy alloys and additive manufacturing are both new discipline and research on high entropy alloys via additive manufacturing is even on its infancy. This paper introduces the most commonly additive manufacturing technologies for high entropy alloys, focusing on the research on the microstructure evolution laws, mechanical properties, corrosion resistance, and high entropy alloy composite materials in additive manufactu-ring technology. Meanwhile, this paper summarizes the advantages and disadvantages of additive manufacturing high entropy alloys, and provides some references for the study of additive manufacturing technology in high entropy alloys.
Key words:  high entropy alloy    additive manufacturing    solid solution    refine grains    mechanical properties    corrosion resistance
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51901016);装备预研兵器工业联合基金(6141B012808);中央高校基本科研业务费专项资金(FRF-TP-18-031A2; FRF-GF-18-024B)
通讯作者:  zhangjin@ustb.edu.cn   
作者简介:  马旻昱,2015年6月毕业于中国民航大学,获得工学硕士学位。现为北京科技大学新材料技术研究院博士研究生,在张津教授的指导下进行研究。目前主要研究领域为激光制备高熵合金的耐高温性能。
张津,1963年生,博士,教授,博士研究生导师,全国模范教师。1988年获得硕士学位后开始在重庆大学机械传动国家重点实验室工作,曾任副主任。1998—1999年在英国伯明翰大学材料工程学院作访问学者。2004—2005年在美国密苏里-哥伦比亚大学作访问学者。2001年调入重庆工学院,曾任材料科学与工程学院院长,重庆市中青年骨干教师,重庆市科技顾问团顾问,重庆市首批学术带头人后备人选;2007年底调入北京科技大学,现为北京市腐蚀、磨蚀与表面技术重点实验室主任、教育部腐蚀与防护国防重点实验室副主任。主持或主研完成国家级、部省级项目60余项,已发表核心学术论文100余篇,被三大检索系统收录50余篇,获省部级奖3项,授权专利20余项,主编出版专著3本。现为中国腐蚀学会理事,中国机械工程学会表面工程分会常务理事,中国腐蚀学会高温委员会理事,中国材料学会镁合金分会常务理事,《表面技术》杂志编委,《中国有色金属学报》等杂志审稿人。
引用本文:    
马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
MA Minyu, LIAN Yong, ZHANG Jin. Review and Perspective on High Entropy Alloys Prepared by Additive Manufacturing. Materials Reports, 2020, 34(17): 17082-17088.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030074  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17082
1 Ye Y, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Ren M, Li B, Fu H. Transactions of Nonferrous Metals Society of China, 2013, 23(4), 991.
4 Zhang Y, Zhou Y J. Materials Science Forum, 2007, 561, 1337.
5 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546.
6 Yao M, Pradeep K G, Tasan C C, et al. Scripta Materialia, 2014, 72, 5.
7 He J, Wang H, Huang H, et al. Acta Materialia, 2016, 102, 187.
8 Rivera O, Allison P, Jordon J, et al. Materials Science and Engineering: A, 2017, 694, 1.
9 Mendoza M Y, Samimi P, Brice D A, et al. Metallurgical and Materials Transactions A, 2017, 48(7), 3594.
10 Bermingham M, Stjohn D, Krynen J, et al. Acta Materialia, 2019, 168, 261.
11 Jiang H, Tang H B, Fang Y L, et al. Chinese Journal of Lasers, 2011, 39(2), 78 (in Chinese).
姜华, 汤海波, 方艳丽, 等.中国激光, 2011, 39(2), 78.
12 Zhao Z G, Bo L, Li L, et al. Aeronautical Manufacturing Technology, 2014, 463(19), 46 (in Chinese).
赵志国, 柏林, 李黎, 等.航空制造技术, 2014, 463(19), 46.
13 Yang X W, Yang Y Q, Liu Y, et al. Chinese Journal of Lasers, 2015, 42(3), 62 (in Chinese).
杨雄文, 杨永强, 刘洋, 等.中国激光, 2015, 42(3), 62.
14 Chang F, Miao X G, Xia J Q. Robot Technique and Application, 2019(3), 40 (in Chinese).
常峰, 苗新刚, 夏建强.机器人技术与应用, 2019(3), 40.
15 Zhou P F, Xiao D H, Wu Z, et al. Materials Science and Engineering: A, 2019, 739, 86.
16 Wu W, Zhou R, Wei B, et al. Materials Characterization, 2018, 144, 605.
17 Brif Y, Thomas M, Todd I. Scripta Materialia, 2015, 99, 93.
18 Zhang C, Zhang H, Wu C, et al. Vacuum, 2017, 141, 181.
19 He R J, Wang H M. Journal of Aeronautical Materials, 2009, 29(6), 18 (in Chinese).
贺瑞军, 王华明.航空材料学报, 2009, 29(6), 18.
20 Liu Q, Wang Y, Zheng H, et al. Optics & Laser Technology, 2016, 82, 1.
21 Qi H, Azer M, Singh P. The International Journal of Advanced Manufacturing Technology, 2010, 48(1-4), 121.
22 Zhu X F, Zhong M L, Liu W J, et al. Chinese Journal of Lasers, 2007, 34(1), 185 (in Chinese).
朱晓峰, 钟敏霖, 刘文今, 等.中国激光, 2007, 34(1), 185.
23 Petrat T, Graf B, Gumenyuk A, et al. Physics Procedia, 2016, 83, 761.
24 Joseph J, Jarvis T, Wu X, et al. Materials Science and Engineering: A, 2015, 633, 184.
25 Yan W, Ge W, Qian Y, et al. Acta Materialia, 2017, 134, 324.
26 Guo C, Lin F, Ge W J. Journal of Mechanical Engineering, 2014, 50(21), 152 (in Chinese).
郭超, 林峰, 葛文君.机械工程学报, 2014, 50(21), 152.
27 Yang X, Xi Z P, Liu Y, et al. Rare Metal Materials and Engineering, 2009, 38(7), 1272 (in Chinese).
杨鑫, 奚正平, 刘咏, 等.稀有金属材料与工程, 2009, 38(7), 1272.
28 Fujieda T, Shiratori H, Kuwabara K, et al. Materials Letters, 2015, 159, 12.
29 Fan Q, Li B, Zhang Y. Journal of Alloys and Compounds, 2014, 614, 203.
30 Li B, Wang Y, Ren M, et al. Materials Science and Engineering: A, 2008, 498(1-2), 482.
31 Jiang S Y, Lin Z F, Sun Y X. Rare Metal Materials and Engineering, 2018, 47(10), 277 (in Chinese).
蒋淑英, 林志峰, 孙永兴.稀有金属材料与工程, 2018, 47(10), 277.
32 Kunce I, Polanski M, Bystrzycki J. International Journal of Hydrogen Energy, 2013, 38(27), 12180.
33 Tong Z, Ren X, Jiao J, et al. Journal of Alloys and Compounds, 2019, 785, 1144.
34 Xiang S, Luan H, Wu J, et al. Journal of Alloys and Compounds, 2019, 773, 387.
35 Niu P D, Li R D, Yuan T C, et al. Intermetallics, 2019, 104, 24.
36 Xiang S, Zhang L, Liu X, et al. Transactions of Materials and Heat Treatment, 2018, 39(10), 29 (in Chinese).
向硕, 张雷, 刘学, 等.材料热处理学报, 2018, 39(10), 29.
37 Guan S, Wan D, Solberg K, et al. Materials Science and Engineering: A, 2019, 761, 138056.
38 Xiang S, Luan H, Wu J, et al. Journal of Alloys and Compounds, 2019, 773, 387.
39 Chew Y, Bi G J, Zhu Z G, et al. Materials Science and Engineering: A, 2019, 744, 137.
40 Li Q Y, Li D C, Zhang H, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 61(In Chinese).
李青宇, 李涤尘, 张航, 等.航空制造技术, 2018, 61(10), 61.
41 Li Q Y, Zhang H, Li D C, et al. Journal of Mechanical Engineering, 2019, 55(15), 10 (In Chinese).
李青宇, 张航, 李涤尘, 等.机械工程学报, 2019, 55(15), 10.
42 Li R, Niu P, Yuan T, et al. Journal of Alloys and Compounds, 2018, 746, 125.
43 Yao H, Tan Z, He D, et al. Journal of Alloys and Compounds, 2020, 813, 152196.
44 Fujieda T, Shiratori H, Kuwabara K, et al. Materials Letters, 2017, 189, 148.
45 Yang X, Zhou Y, Xi S, et al. Materials Science and Engineering: A, 2019, 767, 138394.
46 Shiratori H, Fujieda T, Yamanaka K, et al. Materials Science and Engineering: A, 2016, 656, 39.
47 Zhou K, Li J, Wang L, et al. Intermetallics, 2019, 114, 106592.
48 Agrawal P, Thapliyal S, Nene S S, et al. Additive Manufacturing, 2020, 32, 101098.
49 Luo H, Li Z, Mingers A M, et al. Corrosion Science, 2018, 134, 131.
50 Nair R B, Arora H S, Mukherjee S, et al. Ultrasonics Sonochemistry, 2018, 41, 252.
51 Nene S S, Frank M, Liu K, et al. Scripta Materialia, 2019, 166, 168.
52 Kuwabara K, Shiratori H, Fujieda T, et al. Additive Manufacturing, 2018, 23, 264.
53 Fujieda T, Chen M, Shiratori H, et al. Additive Manufacturing, 2019, 25, 412.
54 Melia M A, Carroll J D, Whetten S R, et al. Additive Manufacturing, 2019, 29, 100833.
55 Amar A, Li J, Xiang S, et al. Intermetallics, 2019, 109, 162.
56 Li B, Qian B, Xu Y, et al. Materials Letters, 2019, 252, 88.
57 Li B, Zhang L, Xu Y, et al. Powder Technology, 2020, 360, 509.
58 Li J, Xiang S, Luan H, et al. Journal of Materials Science & Technology, 2019, 35(11), 2430.
59 Savinov R, Yachao W, Jing S. Journal of Manufactyring Process, DOI:10.1016/j.jmapro. 2020.04.018.
60 Li B, Zhang L, Yang B. Composites Communications, 2020, 19, 56.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[15] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed