Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8025-8030    https://doi.org/10.11896/cldb.19090215
  无机非金属及其复合材料 |
氮添加量对块体纳米晶NdFeB永磁材料的影响
梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔
福州大学材料科学与工程学院,福州 350108
Effects of Nitrogen Addition on Bulk Nanocrystalline NdFeB Permanent Magnets
LIANG Huidong, ZHENG Hanjie, YANG Hao, WANG Chen, CHEN Junfeng, WANG Bingshu
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 5274KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过铜模吸铸法制备Φ2 mm的棒状Nd8.5Fe65.5Ti2ZrNbB22-xNx(x=0~2,原子分数,%)合金,研究了氮添加量对样品微结构、室温和高温磁性能、耐腐蚀性能的影响。结果表明,添加氮元素可以细化晶粒,抑制Nd19Fe68B68相的生成,促进Nd2Fe14B永磁相的生成,显著提高样品的磁性能、温度稳定性和耐腐蚀性能。当x=1时,样品的室温磁性能、高温磁性能和耐腐蚀性能均达到最佳。与x=0的样品相比,x=1的样品的室温内禀矫顽力iHc、剩磁Br和最大磁能积(BH)max分别提高了70.6%、14.6%和100.0%;25~180 ℃温度范围内的剩磁温度系数α和矫顽力温度系数β的绝对值分别降低了36.1%和19.7%;25~250 ℃温度范围内的磁通不可逆损失Hirr从-30.8%/K提高到-19.6%/K;自腐蚀电位Ecorr从-0.979 V升高到-0.784 V,自腐蚀电流Icorr从1.054×10-4 A/cm2下降到1.736×10-5 A/cm2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁惠东
郑汉杰
杨浩
王晨
陈俊锋
汪炳叔
关键词:  永磁材料  NdFeB  铜模吸铸法  磁性能  耐腐蚀性能    
Abstract: The bulk nanocrystalline magnets of Nd8.5Fe65.5Ti2ZrNbB22-xNx(x=0—2, at%) in the rod form with 2 mm diameter were prepared by copper mold suction casting. The effects of nitrogen addition on the microstructure, room-temperature and high-temperature magnetic properties, and corrosion resistance of the samples were studied. It is shown that the N addition can refine the grains, inhibit the formation of Nd19Fe68B68 phase, and promote the formation of Nd2Fe14B permanent magnetic phase. Thus, the magnetic properties, thermal stability and corrosion resis-tance of the samples are significantly improved. The sample with x=1 exhibited the best room-temperature and high-temperature magnetic properties, and the best corrosion resistance. As compared to the sample with x=0, the intrinsic coercivity iHc, the remanence Br and the maximum energy product (BH)max of the sample with x=1 at room temperature increased by 70.6%, 14.6% and 100.0%, respectively. At the same time, in the temperature range of 25—180 ℃, the absolute values of the temperature coefficients α and β for the remanence and coercivity decrease by 36.1% and 19.7%, respectively. The flux irreversible loss in the temperature range of 25—250 ℃ increases from -30.8%/K for the sample with x=0 to -19.6%/K for the sample with x=1. Furthermore, as x increases from 0 to 1, the corrosion potential Ecorr increases from -0.979 V to -0.784 V, and the corrosion current density Icorr decreases from 1.054×10-4 A/cm2 to 1.736×10-5 A/cm2.
Key words:  permanent magnets    NdFeB    copper mold suction casting    magnetic property    corrosion resistance
                    发布日期:  2020-04-25
ZTFLH:  TM273  
基金资助: 福建省自然科学基金项目(2017J01477);福建省高校产学合作项目(2017H6016);上杭县奇迈科技创新基金项目(2017SQM04); 国家自然科学基金(51871057)
通讯作者:  msewang@fzu.edu.cn   
作者简介:  梁惠东,2017年6月毕业于江西理工大学材料科学与工程学院,获得工学学士学位。现为福州大学材料科学与工程学院硕士研究生,在王晨教授的指导下进行研究。目前主要研究领域为稀土永磁材料。
王晨,福州大学教授,2006年毕业于浙江大学,获材料科学与工程专业博士学位。同年进入福州大学工作至今,主要研究方向包括:稀土永磁材料和高强高导铜合金材料。在国内外学术期刊上发表文章50多篇,授权发明专利10项。
引用本文:    
梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
LIANG Huidong, ZHENG Hanjie, YANG Hao, WANG Chen, CHEN Junfeng, WANG Bingshu. Effects of Nitrogen Addition on Bulk Nanocrystalline NdFeB Permanent Magnets. Materials Reports, 2020, 34(8): 8025-8030.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090215  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8025
1 Wang K Y, Feng Y L, Liu K.Materials Reports, 2019, 33(Z1),116(in Chinese).
王坤宇, 冯运莉, 柳昆. 材料导报, 2019, 33(Z1),116.
2 Jiang X L, Jiang Y X, Pan J, et al. Journal of the Chinese Society of Rare Earths, 2014, 32(3),316(in Chinese).
姜小丽, 蒋远霞, 潘晶, 等.中国稀土学报, 2014, 32(3),316.
3 Huang Y L, Wang Y, Hou Y H, et al.Journal of Magnetism and Magnetic Materials, 2016, 399(1),175.
4 Huang H Y, Liu Z W, Li X Q, et al.Journal of Magnetic Materials and Devices,2011, 42(2),9(in Chinese).
黄华勇, 刘仲武, 李小强, 等.磁性材料及器件, 2011, 42(2),9.
5 Guo Z, Li M, Wang J, et al.AIP Advances, 2018, 8(5),056234.
6 Lee Y I, Huang G Y, Shih C W, et al.Journal of Magnetism and Magnetic Materials, 2017, 439,1.
7 Wang C, Chen J J, Li Y, et al.Journal of Alloys and Compounds, 2013, 555,16.
8 Chang H W, Cheng Y T, Hsieh C C, et al. Journal of Alloys and Compounds, 2011, 509(4),1249.
9 Chang H W, Cheng Y T, Chang C W, et al.Journal of Applied Physics, 2009, 105(7),07A742.
10 Wang C, Lin W C, Hsieh C C, et al.Materials Technology, 2013, 28(5),290.
11 Wu S Z, Shu R Z, Hao Z, et al.Rare Metal Materials and Engineering, 2015, 44(4),813.
12 Kobayashi K, Urushibata K, Matsushita T, et al.Journal of Alloys and Compounds, 2014, 615,569.
13 Hussain M, Zhao L Z, Zhang C, et al.Physica B: Condensed Matter, 2016, 483,69.
14 Li Z B, Zhang M, Shen B G, et al.Materials Letters, 2016, 172,102.
15 Hu Z, Wang H, Ma D, et al.Journal of Low Temperature Physics, 2013, 170, 313.
16 Liu F M, Zhang H Y, Zhang T.Journal of Materials Engineering, 2014(10),6(in Chinese).
刘繁茂, 张慧燕, 张涛. 材料工程, 2014(10),6.
17 Liu Z W, Qian D Y, Zhao L Z, et al.Journal of Alloys and Compounds, 2014, 606(16),44.
18 Chang H W, Lin W C, Shih C W, et al.Journal of Alloys and Compounds, 2012, 545,231.
19 Chiu C H, Chang H W, Chang C W, et al.Journal of Iron and Steel Research International, 2006, 13,136.
20 Liu W, Zhang Z D, Sun X K, et al.Journal of Alloys and Compounds, 2000, 309(1-2),172.
21 Zhao L Z, Hong Y, Jiao D L, et al.Journal of Physics D: Applied Phy-sics, 2016, 49(18),185005.
22 Liu Z, Lin W C, Shih W C, et al. Journal of Alloys and Compounds, 2012, 538,28.
23 Chrobak A, Ziókowski G, Randrianantoandro N, et al.Acta Materialia, 2015, 98,318.
24 Liu W, Zhang Z D, Sun X K, et al. Journal of Physics D:Applied Phy-sics, 1999, 32(14),1591
25 Zhang Z D, Liu W, Zhang D, et al.Journal of Physics:Condensed Matter, 1999, 11,3951.
26 Patterson A L.Physical Review, 1939, 56(10),978.
27 Fischer R, Schrefl T, Kronmüller H, et al.Journal of Magnetism and Magnetic Materials, 1996, 153(1-2),35.
28 Wu H, Xiao S, Chen D L, et al.Surface and Coatings Technology, 2017, 312,66.
[1] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[2] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[3] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[4] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[5] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[6] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[7] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[8] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[9] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[10] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[11] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[12] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[13] 刘世丰, 曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
[14] 任智炜, 罗兵辉, 郑亚亚, 高阳, 何川. Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响[J]. 材料导报, 2019, 33(18): 3072-3076.
[15] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed