Abstract: A composite ceramic coating was prepared on the surface of 5005 aluminum alloy by plasma electrolytic oxidation (PEO) technique with red mud (RM) as electrolyte additive. The effects on the thickness, microstructure and corrosion resistance of the coatings at various positive voltages were studied. The results indicated that with the increase of positive voltage, the coating grew faster and the thickness increased. When the oxidation time was 20 min, the maximum thickness could be 35.33 μm; surface roughness of the coating increased continuously, with a minimum of 0.68 μm and a maximum of 4.21 μm; surface porosity of the coating first decreased and then increased, with a minimum of 24.36%. The coating consisted mainly of γ-Al2O3 and a small amount of amorphous phase, and α-Al2O3 and a trace amount of RM minerals. However, increasing the positive voltage can not effectively promote the RM particles participation in the coating formation. The experimental results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) showed that corrosion resistance of the coating increased first and then decreased with the increase of positive voltage. When the positive voltage was 475—525 V, the coating showing a good corrosion resistance with lower corrosion current density and corrosion rate, and higher impedance. The existence of RM particles has improved the structure and corrosion resistance of the coating to some extent.
刘世丰, 曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
LIU Shifeng, ZENG Jianmin. Effect of Positive Voltage on the Structure and Corrosion Resistance of Red Mud Plasma Electrolytic Oxide Coating. Materials Reports, 2019, 33(22): 3720-3726.
Antunes M L P, Couperthwaite S J, Conceicao F T D. Industrial & Engineering Chemistry Research, 2012, 51(2), 775.
[2]
Sglavo V M, Campostrini R, Maurina S. Journal of the European Ceramic Society, 2000, 20(3), 235.
[3]
Yao W J, Fang B. Inorganic Chemmicals Industry, 2010, 42(12), 9 (in Chinese).姚万军, 方冰. 无机盐工业, 2010, 42(12), 9.
[4]
Perez-Villarejo L, Corpas-Iglesias F A, Martinez-Martinez S, et al. Construction & Building Materials, 2012, 35(10),656.
[5]
Collazo A, Covelo A, Novoa X R, et al. Progress in Organic Coatings, 2012, 74(2), 334.
[6]
Collazo A, Femandez D, Izquierdo M, et al. Progress in Organic Coa-tings, 2005, 52(4), 351.
[7]
Sutar H. Carbon, 2013, 46(11), 140.
[8]
Sutar H. Materials Sciences & Applications, 2016, 7(3),171.
[9]
Sutar H, Roy D, Mishra S C. Indian Journal of Materials Science, 2015, 2015(1), 1.
[10]
Sutar H, Roy D, Mishra S C, et al. Physical Science International Journal, 2014, 5(1), 61.
[11]
Sutar H, Roy D, Mishra S C, et al. Tribology in Industry, 2018, 40(1), 117.
[12]
Stojadinovi S. Journal of the Serbian Chemical Society, 2013, 78(5), 713.
[13]
Wang H B, Fang Z G, Jiang B L. Microarc oxidation technology and its applications in sea environments, National Defense Industry Press, China,2010 (in Chinese).王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用, 国防工业出版社, 2010.
[14]
Moon S, Jeong Y. Corrosion Science, 2009, 51(7), 1506.
[15]
Erfanifar E, Aliofkhazraei M, Nabavi H F, et al. Materials Chemistry & Physics, 2016, 185, 162.
[16]
Stojadinovic S, Vasilic R, Belca I, et al. Corrosion Science, 2010, 52(10),3258.
[17]
Li Q B, Liang J, Liu B X, et al. Applied Surface Science, 2014, 297(4),176.
[18]
Wu H H, Lu X Y, Long B H, et al. Materials Letters, 2005, 59(2), 370.
[19]
Du C L, Chen J, Tang L, et al. The Chinese Journal of Nonferrous Me-tals, 2014, 24(5),1118 (in Chinese).杜翠玲, 陈静, 汤莉, 等. 中国有色金属学报, 2014, 24(5),1118.
[20]
Liu R M, Guo F, Li P F. Transaction of Materials and Heat Treatment, 2008, 29(1),137 (in Chinese).刘荣明,郭锋,李鹏飞. 材料热处理学报, 2008, 29(1), 137.
[21]
Guo F, Liu R M, Li P F. Heat Treatment of Metals, 2007, 32(10), 38(in Chinese).郭锋,刘荣明,李鹏飞. 金属热处理, 2007, 32(10), 38.
[22]
Xiong W M, Ning C Y, Gu Y H, et al. Rare Metal Materials and Engineering, 2011, 40(12), 2236 (in Chinese).熊文名, 宁成云, 顾艳红, 等. 稀有金属材料与工程, 2011, 40(12), 2236.
[23]
Yang H F, Liu C W, Wu S J. Foundry Technology, 2014, 35(6), 1225 (in Chinese).杨慧芳, 刘彩文, 吴士军. 铸造技术, 2014, 35(6),1225.
[24]
Liu C W, Liu X D. Material & Heat Treatment, 2012, 41(22), 157 (in Chinese).刘彩文, 刘向东. 材料热处理技术, 2012, 41(22), 157.
[25]
Chung F H. Journal of Applied Crystallography, 1974, 7(6), 521.
[26]
Chung F H. Journal of Applied Crystallography, 1974, 7(6), 527.
[27]
Liu X L, Lu L, Zhou Z F, et al. Special Casting & Nonferrous Alloys, 2013, 33(1),85 (in Chinese).刘晓龙, 鲁亮, 邹志锋, 等. 特种铸造及有色合金, 2013, 33(1), 85.
[28]
Xue W B, Hua M, Shi X L, et al. Journal of the Chinese Ceramic Society, 2007, 35(6), 731 (in Chinese).薛文斌, 华铭, 施修龄, 等. 硅酸盐学报, 2007, 35(6), 731.
[29]
Teng M, He X D, Li Y. Journal of Aeronautical Materials, 2004, 24(6), 47 (in Chinese).滕敏, 赫晓东, 李垚. 航空材料学报, 2004, 24(6), 47.
[30]
Rehman Z U, Lee D G, Koo B H. Korean Journal of Materials Research, 2015, 25(10),503.
[31]
Stern M, Geaby A L. Journal of the Electrochemical Society, 1957, 104(1),56.
[32]
Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy,Science Press, China, 2002(in Chinese).曹楚南, 张鉴清. 电化学阻抗谱导论, 科学出版社, 2002.
[33]
Atun G, Hisarli G. Journal of Colloid & Interface Science, 2000, 228(1), 40.
[34]
Chvedov D, Ostap S, Le T. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2001, 182(1), 131.
[35]
Diaz B, Joiret S, Keddam M, et al. Electrochimica Acta, 2004, 49(17), 3039.
[36]
Cabeza M, Collazo A, Novoa X R, et al. Journal of Corrosion Science & Engineering, 2003,6,1016.
[37]
Ribeiro D V, Labrincha J A, Morelli M R. Cement & Concrete Research, 2012, 42(1), 124.