Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3720-3726    https://doi.org/10.11896/cldb.18100006
  无机非金属及其复合材料 |
正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响
刘世丰,曾建民
西北工业大学材料学院,凝固技术国家重点实验室,西安 710072
Effect of Positive Voltage on the Structure and Corrosion Resistance of Red Mud Plasma Electrolytic Oxide Coating
LIU Shifeng, ZENG Jianmin
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 3871KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以赤泥(RM)为电解液添加剂,采用等离子体电解氧化(PEO)技术在5005铝合金表面制备一层复合陶瓷层,研究了不同正向电压对陶瓷层厚度、组织结构和耐腐蚀性能的影响。结果表明:随正向电压的升高,陶瓷层生长加快,厚度增大,氧化时间为20 min时,陶瓷层的最大厚度可达35.33 μm;陶瓷层的表面粗糙度不断增大,最小为0.68 μm,最大可达4.21 μm;陶瓷层的表面孔隙率先减小后增大,最小为24.36%。陶瓷层主要由γ-Al2O3、少量的无定形相和α-Al2O3以及微量的赤泥矿物组成,但升高正向电压并不能有效地促进赤泥颗粒参与成膜。电化学阻抗谱(EIS)与动电位极化(PDP)的试验结果一致,表明陶瓷层的耐腐蚀性能随正向电压的升高先增强后减弱,当正向电压为475~525 V时,陶瓷层的腐蚀电流密度和腐蚀速率较小,阻抗较大,耐腐蚀性能较好。赤泥颗粒的存在在一定程度上改善了陶瓷层的结构和耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘世丰
曾建民
关键词:  赤泥  等离子体电解氧化技术  5005铝合金  正向电压  耐腐蚀性能    
Abstract: A composite ceramic coating was prepared on the surface of 5005 aluminum alloy by plasma electrolytic oxidation (PEO) technique with red mud (RM) as electrolyte additive. The effects on the thickness, microstructure and corrosion resistance of the coatings at various positive voltages were studied. The results indicated that with the increase of positive voltage, the coating grew faster and the thickness increased. When the oxidation time was 20 min, the maximum thickness could be 35.33 μm; surface roughness of the coating increased continuously, with a minimum of 0.68 μm and a maximum of 4.21 μm; surface porosity of the coating first decreased and then increased, with a minimum of 24.36%. The coating consisted mainly of γ-Al2O3 and a small amount of amorphous phase, and α-Al2O3 and a trace amount of RM minerals. However, increasing the positive voltage can not effectively promote the RM particles participation in the coating formation. The experimental results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) showed that corrosion resistance of the coating increased first and then decreased with the increase of positive voltage. When the positive voltage was 475—525 V, the coating showing a good corrosion resistance with lower corrosion current density and corrosion rate, and higher impedance. The existence of RM particles has improved the structure and corrosion resistance of the coating to some extent.
Key words:  red mud    plasma electrolytic oxidation technique    5005 aluminum alloy    positive voltage    corrosion resistance
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG174.4  
基金资助: 广西创新驱动发展专项(桂科AA17202001);广西有色金属及特色材料加工重点实验室开放课题基金项目(GXKFJ16-05)
作者简介:  刘世丰,西北工业大学材料学院材料加工工程专业博士研究生,主要从事铝合金材料表面工程技术的研究,在国内外期刊发表学术论文4余篇,2016年获得广西有色金属及特色材料加工重点实验室开放课题基金资助。
曾建民,广西大学教授,西北工业大学兼职博士研究生导师。主要从事摩擦与磨损和表面技术研究。主持国家自然科学基金2项,“973”计划前期项目2项,国家重点研发计划专题1项。获国家发明三等奖1项,航空工业科技进步一等奖、二等奖各1项,国防科工委科技进步三等奖1项。
引用本文:    
刘世丰, 曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
LIU Shifeng, ZENG Jianmin. Effect of Positive Voltage on the Structure and Corrosion Resistance of Red Mud Plasma Electrolytic Oxide Coating. Materials Reports, 2019, 33(22): 3720-3726.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100006  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3720
[1] Antunes M L P, Couperthwaite S J, Conceicao F T D. Industrial & Engineering Chemistry Research, 2012, 51(2), 775.
[2] Sglavo V M, Campostrini R, Maurina S. Journal of the European Ceramic Society, 2000, 20(3), 235.
[3] Yao W J, Fang B. Inorganic Chemmicals Industry, 2010, 42(12), 9 (in Chinese).姚万军, 方冰. 无机盐工业, 2010, 42(12), 9.
[4] Perez-Villarejo L, Corpas-Iglesias F A, Martinez-Martinez S, et al. Construction & Building Materials, 2012, 35(10),656.
[5] Collazo A, Covelo A, Novoa X R, et al. Progress in Organic Coatings, 2012, 74(2), 334.
[6] Collazo A, Femandez D, Izquierdo M, et al. Progress in Organic Coa-tings, 2005, 52(4), 351.
[7] Sutar H. Carbon, 2013, 46(11), 140.
[8] Sutar H. Materials Sciences & Applications, 2016, 7(3),171.
[9] Sutar H, Roy D, Mishra S C. Indian Journal of Materials Science, 2015, 2015(1), 1.
[10] Sutar H, Roy D, Mishra S C, et al. Physical Science International Journal, 2014, 5(1), 61.
[11] Sutar H, Roy D, Mishra S C, et al. Tribology in Industry, 2018, 40(1), 117.
[12] Stojadinovi S. Journal of the Serbian Chemical Society, 2013, 78(5), 713.
[13] Wang H B, Fang Z G, Jiang B L. Microarc oxidation technology and its applications in sea environments, National Defense Industry Press, China,2010 (in Chinese).王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用, 国防工业出版社, 2010.
[14] Moon S, Jeong Y. Corrosion Science, 2009, 51(7), 1506.
[15] Erfanifar E, Aliofkhazraei M, Nabavi H F, et al. Materials Chemistry & Physics, 2016, 185, 162.
[16] Stojadinovic S, Vasilic R, Belca I, et al. Corrosion Science, 2010, 52(10),3258.
[17] Li Q B, Liang J, Liu B X, et al. Applied Surface Science, 2014, 297(4),176.
[18] Wu H H, Lu X Y, Long B H, et al. Materials Letters, 2005, 59(2), 370.
[19] Du C L, Chen J, Tang L, et al. The Chinese Journal of Nonferrous Me-tals, 2014, 24(5),1118 (in Chinese).杜翠玲, 陈静, 汤莉, 等. 中国有色金属学报, 2014, 24(5),1118.
[20] Liu R M, Guo F, Li P F. Transaction of Materials and Heat Treatment, 2008, 29(1),137 (in Chinese).刘荣明,郭锋,李鹏飞. 材料热处理学报, 2008, 29(1), 137.
[21] Guo F, Liu R M, Li P F. Heat Treatment of Metals, 2007, 32(10), 38(in Chinese).郭锋,刘荣明,李鹏飞. 金属热处理, 2007, 32(10), 38.
[22] Xiong W M, Ning C Y, Gu Y H, et al. Rare Metal Materials and Engineering, 2011, 40(12), 2236 (in Chinese).熊文名, 宁成云, 顾艳红, 等. 稀有金属材料与工程, 2011, 40(12), 2236.
[23] Yang H F, Liu C W, Wu S J. Foundry Technology, 2014, 35(6), 1225 (in Chinese).杨慧芳, 刘彩文, 吴士军. 铸造技术, 2014, 35(6),1225.
[24] Liu C W, Liu X D. Material & Heat Treatment, 2012, 41(22), 157 (in Chinese).刘彩文, 刘向东. 材料热处理技术, 2012, 41(22), 157.
[25] Chung F H. Journal of Applied Crystallography, 1974, 7(6), 521.
[26] Chung F H. Journal of Applied Crystallography, 1974, 7(6), 527.
[27] Liu X L, Lu L, Zhou Z F, et al. Special Casting & Nonferrous Alloys, 2013, 33(1),85 (in Chinese).刘晓龙, 鲁亮, 邹志锋, 等. 特种铸造及有色合金, 2013, 33(1), 85.
[28] Xue W B, Hua M, Shi X L, et al. Journal of the Chinese Ceramic Society, 2007, 35(6), 731 (in Chinese).薛文斌, 华铭, 施修龄, 等. 硅酸盐学报, 2007, 35(6), 731.
[29] Teng M, He X D, Li Y. Journal of Aeronautical Materials, 2004, 24(6), 47 (in Chinese).滕敏, 赫晓东, 李垚. 航空材料学报, 2004, 24(6), 47.
[30] Rehman Z U, Lee D G, Koo B H. Korean Journal of Materials Research, 2015, 25(10),503.
[31] Stern M, Geaby A L. Journal of the Electrochemical Society, 1957, 104(1),56.
[32] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy,Science Press, China, 2002(in Chinese).曹楚南, 张鉴清. 电化学阻抗谱导论, 科学出版社, 2002.
[33] Atun G, Hisarli G. Journal of Colloid & Interface Science, 2000, 228(1), 40.
[34] Chvedov D, Ostap S, Le T. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2001, 182(1), 131.
[35] Diaz B, Joiret S, Keddam M, et al. Electrochimica Acta, 2004, 49(17), 3039.
[36] Cabeza M, Collazo A, Novoa X R, et al. Journal of Corrosion Science & Engineering, 2003,6,1016.
[37] Ribeiro D V, Labrincha J A, Morelli M R. Cement & Concrete Research, 2012, 42(1), 124.
[1] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 任智炜, 罗兵辉, 郑亚亚, 高阳, 何川. Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响[J]. 材料导报, 2019, 33(18): 3072-3076.
[6] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed