Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10076-10081    https://doi.org/10.11896/cldb.19050047
  金属与金属基复合材料 |
铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能
张春旋, 李艳辉, 李亚楠, 张伟
大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,大连 116024
Preparation and Electromagnetic Wave Absorption Properties of FeSiBPCu Nanocrystalline Soft Magnetic Alloys Powders
ZHANG Chunxuan, LI Yanhui, LI Yanan, ZHANG Wei
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 5484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过高能球磨法制备Fe83.3Si4B8P4Cu0.7纳米晶软磁合金粉体,研究了球磨时间对粉体结构、形貌、电磁参数及电磁波吸收性能的影响。采用XRD和SEM对粉体的微结构及形貌进行表征和观察,采用矢量网络分析仪在2~18 GHz范围内测量粉体的电磁参数,进而评价其吸波性能。结果表明,Fe83.3Si4B8P4Cu0.7合金经20~140 h球磨后可形成平均颗粒尺寸为4.7~10.9 μm的近球形粉体;粉体具有α-Fe纳米晶和非晶相组成的双相复合结构,α-Fe平均晶粒尺寸随球磨时间的延长逐渐减小而后维持在6 nm左右;合金粉体具有优异的软磁性能,经球磨100 h后粉体的饱和磁化强度达到最大值182.3 emu/g;粉体具有高的磁导率、合适的介电常数以及出色的吸波性能,由球磨100 h后的纳米晶粉体/石蜡构成的厚度为2 mm的复合样品在11.5 GHz下具有反射损耗最低值(RLmin为-44.0 dB),且有效吸收频率范围为9.2~15.0 GHz,有效吸收带宽可达5.8 GHz。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春旋
李艳辉
李亚楠
张伟
关键词:  纳米晶软磁合金粉体  软磁性能  吸波性能  球磨    
Abstract: Fe83.3Si4B8P4Cu0.7 nanocrystalline alloy powders with outstanding electromagnetic (EM) wave absorption properties in high frequency were prepared by a high-energy ball milling method. The effects of milling time on structure, morphology, EM parameters and EM wave absorption properties of the powders were investigated. Microstructure and morphology of the powders were characterized by XRD and SEM, respectively. EM parameters were measured by a network vector analyzer in the frequency range of 2—18 GHz, and reflection losses (RL) evaluating EM wave absorption properties were calculated according to transmission line theory. The results showed that near spherical powders with average particle sizes of 4.7—10.9 μm have been formed after milling for 20—140 h. The powders possess an α-Fe nanocrystalline/amorphous compo-site structure, and the average grain size of the α-Fe phase decreases with increasing milling time to 60 h and then maintains at about 6 nm for longer milling time. The alloy powders exhibit excellent soft magnetic properties, and have the highest saturation magnetization of 182.3 emu/g after milling for 100 h. The powders possess high permeability, matchable permittivity, and excellent EM wave absorption properties. The powders milled for 100 h and paraffin composite sample with a thickness of 2.0 mm exhibits the minimum RL of -44.0 dB at 11.5 GHz, and effective absorption bandwidth (RL<-10 dB) is 5.8 GHz covering 9.2—15.0 GHz.
Key words:  nanocrystalline soft magnetic alloys powders    soft magnetic properties    EM wave absorption properties    ball milling
                    发布日期:  2020-04-26
ZTFLH:  TG132.2+71  
基金资助: 国家自然科学基金(51771039;51571047);中央高校基本科研业务费(DUT17LAB10)
通讯作者:  李艳辉,大连理工大学材料科学与工程学院副教授、硕士生导师。2005年毕业于合肥工业大学材料物理专业,2011年获大连理工大学工学博士学位。2011—2015年任大连理工大学讲师,2015年起任现职。主要研究领域为非晶、纳米晶软磁合金、块体非晶合金及其复合材料、高熵合金等。yhli@dlut.edu.cn   
作者简介:  张春旋,2016年6月毕业于合肥工业大学材料成型及控制工程专业,并获得工学学士学位。现为大连理工大学材料科学与工程学院硕士研究生,在李艳辉副教授的指导下进行研究。目前的主要研究方向为磁性电磁波吸收材料。
引用本文:    
张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
ZHANG Chunxuan, LI Yanhui, LI Yanan, ZHANG Wei. Preparation and Electromagnetic Wave Absorption Properties of FeSiBPCu Nanocrystalline Soft Magnetic Alloys Powders. Materials Reports, 2020, 34(10): 10076-10081.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050047  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10076
1 Idris F M, Hashim M, Abbas Z, et al. Journal of Magnetism and Magnetic Materials, 2016, 405, 197.
2 Chen S W, Tan G G, Gu X S, et al. Journal of Alloys and Compounds, 2017, 705, 309.
3 Li N, Huang G W, Li Y Q, et al. ACS Applied Materials and Interfaces, 2017, 9, 2973.
4 Zou B F, Zhou T D, Hu J.Journal of Magnetism and Magnetic Mate-rials, 2013, 335, 17.
5 Lv H L, Ji G B, Li X G, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 225.
6 Xu H B, Bie S W, Jiang J J, et al. Journal of Magnetism and Magnetic Materials, 2016, 401, 567.
7 Wang L, Quan Q C, Zhang L L, et al. Journal of Magnetism and Magnetic Materials, 2018, 449, 385.
8 Yao Y L, Zhang C F, Fan Y Q, et al. Advanced Powder Technology, 2016, 27, 2285.
9 Albaaji A J, Castle E G, Reece M J, et al. Materials and Design, 2017, 122, 296.
10 Duan Y P, Gu S C, Zhang Z L, et al. Journal of Alloys and Compounds, 2012, 542, 90.
11 Zhou Y Y, Xie H, Tao S P, et al. Materials Reports B:Research Papers, 2018, 32(8), 2738(in Chinese).
周影影, 谢晖, 陶世平, 等.材料导报:研究篇, 2018, 32(8), 2738.
12 Wang X, Gong R Z, Li P G, et al. Materials Science and Engineering A, 2007, 466, 178.
13 Yao K F, Shi L X, Chen S Q, et al. Acta Physica Sinica, 2018, 67(1), 016101-4(in Chinese).
姚可夫,施凌翔,陈双琴,等.物理学报,2018, 67(1), 016101-4.
14 Zhang Y, Sharma P, Makino A, et al. AIP Advances, 2013, 3(6), 062118.
15 Kim H B, Jeun J P, Hong S M, et al. Journal of Industrial and Engineering Chemistry, 2010,16, 440.
16 Makino A, Men H, Kubota T, et al. Materials Transaction, 2009, 50(1), 204.
17 Neamtu B V, Marinca T F, Chicinas I, et al. Advanced Powder Technology, 2015, 26, 325.
18 Burton A W, Ong K, Rea T, et al. Microporous and Mesoporous Mate-rials, 2009, 117, 75.
19 Newman A, Zografi G.Journal of Pharmaceutical Sciences, 2014, 103, 2597.
20 Yuan Z Z, Wang B X, Liang W D, et al. Powder Metallurgy Industry, 2006, 16(1), 31(in Chinese).
袁子洲,王冰霞,梁卫东,等.粉末冶金工业,2006, 16(1), 31.
21 Neamtu B V, Marinca T F, Chicinas I, et al. Journal of Alloys and Compounds, 2015, 626, 54.
22 Herzer G. Acta Materialia, 2013, 61, 718.
23 Maeda T, Sugimoto S, Kagotani T, et al. Journal of Magnetism and Magnetic Materials, 2004, 281, 200.
[1] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[2] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[3] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[4] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[5] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[6] 包朝玲, 陈秀琼, 雷梦圆, 柯超然, 张威, 颜慧琼, 林强. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176.
[7] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[8] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[9] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[10] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[11] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[12] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[13] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[14] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[15] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed