Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 894-898    https://doi.org/10.11896/j.issn.1005-023X.2018.06.008
  材料研究 |
铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究
陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰
西安近代化学研究所,西安 710065
Preparation and Microstructure of Aluminum Powder/Polytetrafluoroethylene Mechanical Activated Energetic Composites
TAO Jun, WANG Xiaofeng, HAN Zhongxi, FENG Bo, NAN Hai, XIE Zhongyuan, HUANG Yafeng
Xi’an Modern Chemistry Research Institute, Xi’an 710065
下载:  全 文 ( PDF ) ( 2164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究铝粉/聚四氟乙烯机械活化含能材料的微观性能,利用自制高能球磨机制备了不同球磨时间的机械活化含能材料,利用场发射扫描电镜分析了机械活化含能材料的微观形貌及表面元素分布,利用X射线衍射仪和红外光谱仪表征了材料的物相结构和化学结构。进一步利用分子动力学手段研究了铝粉的不同晶面与聚四氟乙烯的相互作用。结果表明,在长时间的强机械能作用下,聚四氟乙烯和铝粉紧密接触在一起,形成直径为100 μm左右的薄片状复合物;球磨20 min以后,铝粉和聚四氟乙烯分散得较为均匀,但离完全均匀分散还有一定差距;高能球磨仅能引起铝粉/聚四氟乙烯复合材料微观物理结构的变化;分子动力学计算显示,铝粉的不同晶面与聚四氟乙烯相互作用的过程中,范德华力占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶俊
王晓峰
韩仲熙
冯博
南海
谢中元
黄亚峰
关键词:  机械活化含能材料  铝粉  聚四氟乙烯(PTFE)  球磨  微观性能    
Abstract: In order to study the properties of aluminum powder/polytetrafluoroethylene (Al/PTFE) mechanical activated energetic composites (MAECs), MAECs were prepared by high energy ball milling with different milling time. The micro morphology and surface element distribution of MAECs were analyzed. The phase structure and chemical structure of the materials were also characterized. Then the interaction between PTFE and different crystal surfaces of Al was studied by molecular dynamics. Research results showed that PTFE contact closely with Al to form a thin sheet with diameter of about 100 μm after a long period of strong mechanical energy. With ball milling more than 20 min, Al and PTFE dispersed uniformly, but there was a certain gap with the absolute dispersion. High energy ball milling brings only a change in the microstructure of Al/PTFE composites. The interaction between PTFE and different crystal surfaces of Al were dominated by Van der Waals’ force.
Key words:  mechanical activated energetic composites    aluminum powder    polytetrafluoroethylene(PTFE)    ball milling    micro properties
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TJ55  
基金资助: 国家自然科学基金(11502194)
通讯作者:  王:晓峰,男,1967年生,博士,研究员,博士研究生导师,研究方向为混合炸药及其装药技术 E-mail:wangxf_204@163.com   
作者简介:  陶俊:男,1987年生,博士研究生,研究方向为混合炸药及其装药技术 E-mail:taojun4712230@126.com
引用本文:    
陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
TAO Jun, WANG Xiaofeng, HAN Zhongxi, FENG Bo, NAN Hai, XIE Zhongyuan, HUANG Yafeng. Preparation and Microstructure of Aluminum Powder/Polytetrafluoroethylene Mechanical Activated Energetic Composites. Materials Reports, 2018, 32(6): 894-898.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.008  或          http://www.mater-rep.com/CN/Y2018/V32/I6/894
1 Dolgoborodova A Y. Mechanically activated oxidizer-fuel energetic composites[J].Combustion,Explosion,and Shock Waves,2015,51(1):86.
2 Sippel R, Son S F, Groven L J. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation[J].Propellants,Explosives,Pyrotechnics,2013,38(2):286.
3 Streletskii A N, Kolbanev I V, Leonov A V, et al. Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites[J].Colloid Journal,2015,77(2):213.
4 Dreizin E L.Metal based reactive nanomaterial[J].Progress in Energy and Combustion Science,2009,35(2):141.
5 Monk I, Williams R. Electro-static discharge ignition of monolayers of nanocomposite thermite powders prepared by arrested reactive milling[J].Combustion Science and Technology,2015,187(8):1276.
6 Zou Meishuai, Du Xujie, Li Xiaodong, et al. Research progress in super thermite prepared by arrested reactive milling[J].Acta Armamentarii,2013,34(6):783(in Chinese).
邹美帅,杜旭杰,李晓东,等.反应抑制球磨法制备超级铝热剂的研究进展[J].兵工学报,2013,34(6):783.
7 Umbrajkar S M, Schoenitz M, Dreizin E L. Control of structural refinement and composition in Al-MoO3 nanoeomposites prepared by arrested reactive milling[J].Propellants,Explosives,Pyrotechnics,2006,31(5):382.
8 Umbrajkar S M, Seshadri S, Schoenitz M, et al. Aluminum-rich Al-MoO3 nanoeomposite powders prepared by arrested reactive milling[J].Journal of Propulsion and Power,2008,24(2):192.
9 Lerner M I, Glazkova E A, Vorozhtsov A B, et al. Passivation of aluminum nanopowders for use in energetic materials[J].Russian Journal of Physical Chemistry B,2015,9(1):56.
10 André B, Coulet M V, Esposito P H, et al. High-energy ball milling to enhance the reactivity of aluminum nanopowders[J].Materials Letters,2013,110(110):108.
11 Mostovshchikov A V, Ilyin A P,Zakharova M A. Structural and energy state of electro-explosive aluminum nanopowder[J].Key Engineering Materials,2016,712:215.
12 Chen Yu,Hao Haixia,Xu Siyu,et al. Progress in the study of stable structure of difluoramino energetic materials[J].Journal of Ordnance Equipment Engineering,2017(6):125(in Chinese).
陈羽,郝海霞,徐司雨,等.稳定结构的二氟氨基含能材料研究进展[J].兵器装备工程学报,2017(6):125.
13 Lu Yanling,Zhao Ran,Gao Xinbao,et al. Surface disposing Al powder with silane coupling agents[J].Journal of Ordnance Equipment Engineering,2016(6):57(in Chinese).
鲁彦玲,赵然,高欣宝,等.高能混合炸药用铝粉的硅烷偶联剂表面改性研究[J].兵器装备工程学报,2016(6):57.
14 Koch E C. Metal-fluorocarbon based energetic materials[M].Weinheim:Wiley-VCH Verlag GmbH & Co.KGaA,2012.
15 Miller H A, Kusel B S, Danielson S T, et al. Metastable nanostructured metallized fluoropolymer composites for energetics[J].Journal of Materials Chemistry A,2013,1:7050.
16 Losada M, Chaudhurt S. Theoretial study of elementary steps in the reactions between aluminum and teflon fragments under combustive environments[J].Journal of Physical Chemistry A,2009,4(113):5933.
17 Michelle L, Pantoya, Steven W D. The influence of alumina passivation on nano-Al/Teflon reactions[J].Thermochimica Acta,2009,493:109.
18 Sippel T R, Son S F, Groven L J. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation[J].Propellants,Explosives,Pyrotechnics,2013,38:286.
19 Dolgoborodov Y A, Makhov M N, Kolbanev I V, et al. Detonation in an aluminum-teflon mixture[J].Journal of Experimental and Theoretical Physics Letters,2005,81(7):211.
20 Wang J, Qiao Z Q, Yang Y T, et al. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials[J].Chemistry:A European Journal,2016,22(1):279.
21 Wang J, Jiang X J, Zhang L, et al. Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator[J].Nano Energy,2015,12:597.
[1] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[2] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[3] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[4] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[5] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[6] 李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
[7] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[8] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[9] 刘志芳, 刘新红, 黄亚磊, 顾强, 文钰斌. 铝粉表面包覆改性的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 73-79.
[10] 张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed