Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 739-743    https://doi.org/10.11896/cldb.201905002
  材料与可持续发展(二)——材料绿色制造与加工* |
高能球磨-盐辅助氮化低温合成α-Si3N4粉体
张晶1,2, 李红霞1, 刘国齐1
1 中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471039;
2 中材高新氮化物陶瓷有限公司,淄博 255000
Low Temperature Synthesis of α-Si3N4 Powders via High-energy Ball MillingCombined with Salt-assisted Nitridation
ZHANG Jing1,2, LI Hongxia1, LIU Guoqi1
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd, Luoyang 471039;
2 Sinoma Advanced Nitride Ceramics Co., Ltd, Zibo 255000
下载:  全 文 ( PDF ) ( 1950KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以硅粉为原料,NaCl-NaF复合盐为反应介质和稀释剂,采用高能球磨-盐辅助氮化法制备出α-Si3N4粉体。研究了氮化温度、保温时间、盐硅比及复合盐中NaF含量对合成α-Si3N4的影响。利用X射线衍射仪(XRD)和场发射扫描电子显微镜(FE-SEM)对产物的物相组成和显微结构进行了分析表征。结果表明:氮化温度为1 200 ℃、保温时间为4 h、盐硅比为2∶1、复合盐中NaF含量为10%时,硅粉完全氮化。合成的产物中存在大量的α-Si3N4晶须,晶须的直径为40~280 nm,长度为几微米到几十微米;晶须的生长机制为VC机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晶
李红霞
刘国齐
关键词:  α-Si3N4  低温合成  高能球磨  盐辅助氮化  晶须    
Abstract: α-Si3N4 powders were synthesized by a method combined high-energy ball milling with salt-assisted nitridation using silicon powders as raw materials, and NaCl-NaF as reaction medium and diluents. The effects of nitridation temperature, holding time, salt/silicon ratio and NaF content (with in NaCl+NaF) on the formation of α-Si3N4 were investigated. The phase composition and microstructure of the samples were analysed and characterized by XRD and FE-SEM. The results showed that the complete nitridation of silicon powders can be achieved at salt/silicon ratio of 2∶1 and NaF content of 10% after a 1 200 ℃ and 4 h heat treatment. The formation of α-Si3N4 whiskers with 40—280 nm in diameter and several microns to tens of microns in length was observed in the final products. The crystal growth process of α-Si3N4 whiskers follows vapor-crystal (VC) mechanism.
Key words:  α-Si3N4    low temperature synthesis    high-energy ball milling    salt-assisted nitridation    whiskers
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51372231;51772277)
作者简介:  李红霞,工学博士,教授级高工,博士生导师。现任先进耐火材料国家重点实验室主任,耐火材料国家工程研究中心主任,中国金属学会常务理事,中国金属学会耐火材料分会主任委员,全国耐火材料标准化技术委员会主任委员,中科院上海硅酸盐研究所、北京科技大学、郑州大学、天津大学特聘教授等。主要从事耐火材料基础理论、原始创新研究,新产品开发及工程化、产业化研究,获国家技术发明二等奖1项(排名第1),省部级科技进步一等奖5项(三项排名第1),授权发明专利27件,发表论文189篇,专著2部。lihongx0622@126.com。张晶,2018年6月毕业于中钢集团洛阳耐火材料研究院,获得工学硕士学位。研究方向为氮化硅粉体及氮化硅陶瓷制备。
引用本文:    
张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
ZHANG Jing, LI Hongxia, LIU Guoqi. Low Temperature Synthesis of α-Si3N4 Powders via High-energy Ball MillingCombined with Salt-assisted Nitridation. Materials Reports, 2019, 33(5): 739-743.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905002  或          http://www.mater-rep.com/CN/Y2019/V33/I5/739
1 Riley F L. Journal of the American Ceramic Society,2000,83(2),245.
2 Klemm H. Journal of the American Ceramic Society,2010,93(6),1501.
3 Krstic Z, Krstic V D. Journal of Materials Science,2012,47(2),535.
4 Zhu X, Sakka Y. Science & Technology of Advanced Materials,2008,9(3),033001.
5 Li Yawei, Zang Xin, Tian Haibin, et al. Bulletin of the Chinese Ceramic Society,2003,22(1),30(in Chinese).
李亚伟,张忻,田海兵,等.硅酸盐通报,2003,22(1),30.
6 Vlasova M V, Bartnitskaya T S, Sukhikh L L, et al. Journal of Materials Science,1995,30(20),5263.
7 Chen Yixiang, Li Jiangtao, Du Jisheng. Materials Research Bulletin,2008,43(6),1598.
8 Bi Yuhui, Cheng Fei, Li Jun, et al. Journal of Wuhan University of Technology,2007,29(2),8(in Chinese).
毕玉惠,陈斐,李君,等.武汉理工大学学报,2007,29(2),8.
9 Kijima K, Setaka N, Tanaka H. Journal of Crystal Growth,1974,24(10),183.
10 Ding J, Deng C, Yuan W, et al. Ceramics International,2013,39(3),2995.
11 Ding J, Zhu H, Li G, et al. Ceramics International,2016,42(2),2892.
12 Chai Z, Ding J, Deng C, et al. Advanced Powder Technology,2016,27(4),1637.
13 Tian Lang, Liang Feng, Zhang Jiefeng, et al. Journal of Ceramics,2017,38(3),352(in Chinese).
田亮,梁峰,张杰峰,等.陶瓷学报,2017,38(3),352.
14 Liu J, Ding J, Zhu H, et al. Journal of the Ceramic Society of Japan,2017,125(3),155.
15 Kameshima Y, Irie M, Yasumori A, et al. Solid State Ionics,2004,172(1),185.
16 Ren K G, Chen K X, Zhou H P, et al. Key Engineering Materials,2008,368-372,862.
17 Liu Xinkuan, Ma Mingliang. Journal of the Chinese Ceramic Society,2000,28(5)468(in Chinese).
刘新宽,马明亮.硅酸盐学报,2000,28(5),468.
18 Huang Juntong, Zhang Shaowei, Huang Zhaohui, et al. Ceramics International,2014,40(7),11063.
19 Gu Y, Lu L, Zhang H, et al. Journal of the American Ceramic Society,2015,98(6),1762.
20 Campos-Loriz D, Howlett S P, Riley F L, et al. Journal of Materials Science,1979,14(10),2325.
21 Ge Y, Wang Q, Cui W, et al. Journal of the American Ceramic Society,2015,98(10),3398.
[1] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[2] 张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
[3] 李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
[4] 孙文奎, 周松, 马俊辉, 闫珂华, 王君, 陈浩. CSW/POE-g-MA/PA6三元复合材料的结构和性能[J]. 《材料导报》期刊社, 2017, 31(2): 101-104.
[5] 李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
[6] 佟钰, 赵立, 李宛鸿, 李晓, 王晴, 曾尤. 自石灰石矿粉中直接提取CaCO3晶须的碳化-分解法研究*[J]. 《材料导报》期刊社, 2017, 31(16): 134-137.
[7] 蔡满园, 孙晓刚, 聂艳艳, 刘珍红, 邱治文, 陈珑. 基于纸纤维/晶须状碳纳米管/活性炭三元无金属集流体复合纸电极的柔性超级电容器*[J]. 《材料导报》期刊社, 2017, 31(16): 6-11.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed