Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 731-738    https://doi.org/10.11896/cldb.201905001
  材料与可持续发展(二)——材料绿色制造与加工* |
氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化
吴光亮1, 武尚文1, 张永集1, 孟征兵2
1 中南大学资源加工与生物工程学院,长沙 410083;
2 桂林理工大学材料科学与工程学院,桂林 541004
Simulation of Heat Transfer Process and Optimization of Water Distribution Process in Continuous Casting of Nitrogen-alloyed HRB500E Steel
WU Guangliang1, WU Shangwen1, ZHANG Yongji1, MENG Zhengbing2
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083;
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了氮合金化HRB500E连铸坯的凝固传热数学模型,并通过有限差分方法求解传热微分方程;运用Matlab软件进行铸坯凝固传热模拟及仿真计算,分析了原有冷却制度的不合理性,并基于相关冶金准则进行了优化;通过回归分析确定了优化后各冷却区的动态配水关系式。研究表明,原有配水工艺冷却强度偏大,易造成铸坯裂纹及疏松等缺陷;经过优化后将结晶器冷却水量下调15%~20%,二冷区0段和1段冷却水量下调4%~15%, 二冷区2段和3段冷却水量下调30%~55%。采用优化后的冷却制度生产的铸坯角部、边部、中心无任何裂纹,并且偏析和疏松在1.5级以内,铸坯质量得到明显改善,验证了模型的可靠性及工艺优化的合理性。经回归分析后的动态配水关系式拟合度良好,对氮合金化HRB500E连铸生产有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴光亮
武尚文
张永集
孟征兵
关键词:  氮合金化  HRB500E  冷却制度  凝固模型    
Abstract: Amathematical model for solidification heat transfer of HRB500E continuous casting billet with nitrogen alloying was established, and differen-tial equation of heat transfer was solved by finite difference method. The numerical simulation and calculation upon solidification heat transfer of the billet were conducted by Matlab software. In addition, the irrationality of the original cooling system was analyzed, and the optimization was carried out based on the relevant metallurgical criteria. By applying regression analysis, the dynamic relation for the water distribution among each cooling zone after optimization was determined. The research showed that the original water distribution scheme involves excessive cooling intensity, which makes the billets prone to cracking and porosity. And the optimized water distribution scheme have a cooling water flow for crystallizer lowered by 15%—20%, a cooling water flow for 0 and 1 sections lowered by 4%—15%, and a cooling water flow for 2 and 3 sections lowered by 30%—55%, compared to the original scheme. The practical casting guided by the optimized cooling scheme was carried out, and the considerably improved quality of the resultant billet validated the effectiveness of the model and the reliability of the optimization method: no crack was observed at the corner, the edge and the center of the billets, and the segregation and porosity were within 1.5 grades. The dynamic water distribution formula agreed well with the cooling water meter, which is instructive to the continuous casting of nitrogen-alloyed HRB500E.
Key words:  nitrogen alloying    HRB500E    cooling system    solidification model
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TF777.4  
作者简介:  吴光亮,中南大学特聘教授,享受国务院政府津贴专家,现从事钢铁冶金研究工作。获国家发明专利29项,主持国家及省部级项目9项,以第一作者发表学术论文80余篇。glwu_899@sina.com。武尚文,2012年6月毕业于中南大学,获得工学学士学位。现为中南大学资源加工与生物工程学院博士研究生,在吴光亮教授的指导下进行研究。目前主要研究方向为特殊钢冶炼。
引用本文:    
吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
WU Guangliang, WU Shangwen, ZHANG Yongji, MENG Zhengbing. Simulation of Heat Transfer Process and Optimization of Water Distribution Process in Continuous Casting of Nitrogen-alloyed HRB500E Steel. Materials Reports, 2019, 33(5): 731-738.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905001  或          http://www.mater-rep.com/CN/Y2019/V33/I5/731
1 Hwang B, Shim J H, Lee M G, et al. Journal of the Korean Institute of Metals and Materials,2016,54(12),862.
2 Jiang H, Li Q, Jiang W, et al. Steel & Composite Structures,2016,21(2),343.
3 Yang Yuqing, Wang Qingjuan, Du Zhongze, et al. Materials Review A: Review Papers,2015,29(10),101(in Chinese).
杨雨晴,王庆娟,杜忠泽,等.材料导报:综述篇,2015,29(10),101.
4 Bai Ligeng, Liu Weiya. Building Structure,2016(12),49(in Chinese).
白力更,刘维亚.建筑结构,2016(12),49.
5 Lin Xiqiang, Huo Liang, Zhang Tao, et al. Building Science,2015,31(7),103(in Chinese).
蔺喜强,霍亮,张涛,等.建筑科学,2015,31(7),103.
6 Paul S K, Rana P K, Das D, et al. Construction & Building Materials,2015,54(11),170.
7 Chen W, Shi Z, Zhao Y. Hot Working Technology,2010,39(4),35.
8 Su Candong, Chen Wei, Chen Bisheng. Iron Steel Vanadium Titanium,2012,33(1),70(in Chinese).
苏灿东,陈伟,陈必胜.钢铁钒钛,2012,33(1),70.
9 Zhong Zhonghua, Cao Jianchun, Zhou Xiaolong, et al. Transactions of Materials and Heat Treatment,2015,36(2),108(in Chinese).
钟仲华,曹建春,周晓龙,等.材料热处理学报,2015,36(2),108.
10 Chen Dengfu, Yan Guangting, Liu Renda. Journal of Chongqing University(Natural Science Edition),1994,17(1),112(in Chinese).
陈登福,颜广庭,刘人达.重庆大学学报:自然科学版,1994,17(1),112.
11 Heidt V, Jeschar R. Steel Research,1993,64(3),157.
12 Li C, Thomas B G. Metallurgical & Materials Transactions B,2004,35(6),1151.
13 Heidt V, Jeschar R. Steel Research,1993,64(3):157.
14 Zhu Liguang, Zhou Jianhong, Wang Shuoming, et al. Steelmaking,2006,22(2),34(in Chinese).
朱立光,周建宏,王硕明,等.炼钢,2006,22(2),34.
15 Schrewe H F. Continuous casting of steel : fundamental principles and practice,Stahleisen,1989.
16 Mintz B, Yue S, Jonas J J.International Materials Reviews,1991,55(3),168.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed