Please wait a minute...
材料导报  2018, Vol. 32 Issue (10): 1597-1601    https://doi.org/10.11896/j.issn.1005-023X.2018.10.005
  材料研究 |
TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征
李雪云1,2,王合中1,2
1 河南农业大学农业纳米研究中心,郑州 450002;
2 河南农业大学植物保护学院,郑州 450002
Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers
LI Xueyun1,2, WANG Hezhong1,2
1 NanoAgro Center, Henan Agricultural University, Zhengzhou 450002;
2 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
下载:  全 文 ( PDF ) ( 1607KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以虾壳几丁质为原料,利用TEMPO-NaBr-NaClO选择性氧化体系制备羧基化纳米几丁质晶须粒子。测定了反应体系中pH值与NaClO(13%有效氯)含量的变化对几丁质羧基化的影响,研究了生产高羧基含量和小颗粒粒度纳米几丁质晶须的最佳反应条件。利用傅里叶变换红外光谱、透射电子显微镜、动态光散射对制备的负电荷纳米几丁质晶须粒子进行结构表征,测定产品水悬浮液的有效粒径和有效电位;采用电导率法测定负电荷纳米几丁质的羧基含量。实验结果表明:在反应体系B1(pH=10.5,V(NaClO)=15 mL)中,制备的负电荷纳米几丁质羧基含量最大,达(3.16±0.23) mmol/g,纳米晶须粒子流体动力学粒径(Z-ave-rage)为(113.97±2.29) nm,Zeta电位为(-38.73±4.49) mV;在反应体系B0(pH=10.5,V(NaClO)=18 mL)中,制备的NC-晶须的羧基含量、粒子Z-average和Zeta电位分别为(3.00±0.41) mmol/g、(106.13±0.38) nm和(-41.41±6.83) mV。上述两种条件制备的纳米几丁质晶须粒子羧基含量和Zeta电位没有显著差异,但B0晶须粒子有效粒径最小。由于纳米材料的小尺寸效应是影响纳米材料生物活性的关键因素,因此制备高生物活性的纳米几丁质晶须的最佳条件是B0,即制备条件为pH=10.5,V(NaClO)=18 mL(13%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪云
王合中
关键词:  TEMPO氧化  反应体系  纳米几丁质晶须  优化    
Abstract: Carboxylate nanochitin (NC-) whiskers were prepared from shrimp chitin by TEMPO-NaBr-NaClO selective oxidation system. The optimal condition for production of small particles size with high carboxyl content of NC- were investigated by adjusting the pH value and dosage of NaClO (13% available chlorine) in the TEMPO-mediated oxidization system. The resulted NC- whiskers were qualified by Fourier transform infrared spectrometry; the morphology, effective size and size distribution, zeta potential, and carboxyl content of NC- whiskers were examined by transmission electron microscopy, dynamic light scattering method, and conductometry, respectively. The results showed that NC- whiskers synthesized in reaction system B1 (pH=10.5,V(NaClO)=15 mL in the system) had a highest carboxyl group of (3.16±0.23) mmol/g with hydrodynamic diameter (Z-average) of (113.97±2.29) nm and (-38.73±4.49) mV for zeta potential, while the carboxyl content, particle size and zeta potential of the resulted NC- whiskers synthesized in reaction system B0 (pH=10.5, V(NaClO)=18 mL) were (3.00±0.41) mmol/g, (106.13±0.38) nm and (-41.41±6.83) mV respectively. The particle size was significantly decreased with an increase of NaClO in the reaction system at pH 10.5 but there was no significant difference in carboxyl content and zeta potential. Therefore, the optimal condition to produce NC- whisker with a high biological activity is the treatment B0 due to small-size effect of nanomaterials, which was corresponding to the pH=10.5 and V(NaClO)=18 mL in the reaction system.
Key words:  TEPMO-mediate oxidation    reaction system    nanochitin whisker    optimization
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB381  
  TB383  
基金资助: 河南省科技厅国际科技合作(144300510016);河南省教育厅重点项目(14B210037)
通讯作者:  王合中:通信作者,男,1963年生,博士,副教授,主要研究方向为生物纳米材料的制备及其在农业上的应用 E-mail:hezhongw@126.com   
作者简介:  李雪云:女,1992年生,硕士研究生,主要研究方向为生物纳米材料的制备及其在农业上的应用 E-mail:XueyunL007@163.com
引用本文:    
李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers. Materials Reports, 2018, 32(10): 1597-1601.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.005  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1597
1 Clark George L,Smith Albert F. X-ray diffraction studies of chitin,chitosan,and derivatives[J]. The Journal of Physical Chemistry,1936,40(7):863.
2 Muzzarelli Riccardo A A. Chitin[M]. Oxford: Pergamon Press Ltd,1977.
3 Goodrich Jacob D,Winter William T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement [J]. Biomacromol,2007,8(1):252.
4 Li Y M,Zhang Y,Cao Y F,et al. Research progress on selective C6 oxidation of chitosan [J].Journal of Cellulose Science and Technology,2012(2):76(in Chinese).
李一鸣,张岩,曹云峰,等.壳聚糖C6位选择性氧化的研究进展[J]. 纤维素科学与技术,2012(2):76.
5 Zhang Y,Fan Y M,Yu S Y. Research advance of chitin nano-fibers preparation by surface charging[J].Chemistry and Industry of Forest Products,2015,35(3):125(in Chinese).
张燕,范一民,余世袁.晶体表面修饰制备几丁质纳米纤维的研究进展[J].林产化学与工业,2015,35(3):125.
6 Kato Y,Kaminaga J,Matsuo R,et al. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan[J]. Carbohydrate Polymers,2004,58(4):421.
7 Saito T,Yanagisawa M,Isogai A. TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products[J]. Cellulose,2005,12(3):305.
8 Bragd Petter L,Besemer Arie C,Bekkumb Herman van. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside [J]. Carbohydrate Research,2000,328(3):355.
9 Bragd Petter L,Besemer Arie C,Bekkumb Herman van. TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates[J]. Journal of Molecular Catalysis A Chemical,2001,170(1-2):35.
10 Yang G Y,Guo Y C,Wu G H,et al. Nitroxyl radical TEMPO: An organocatalyst for highly efficient and selsctive oxidation of alcohol [J].Progress in Chemistry,2007,19(11):1727(in Chinese).
杨贯羽,郭彦春,武光辉,等.氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂[J].化学进展,2007,19(11):1727.
11 Xu M,Dai H Q,Sun X,et al. Effects of buffer solution on TEMPO-mediated oxidation [J]. Journal of Cellulose Science and Technology,2012,20(1):26(in Chinese).
徐媚,戴红旗,孙旋,等.缓冲溶液对TEMPO/NaClO/NaBr选择性氧化纤维素的影响[J].纤维素科学与技术,2012,20(1):26.
12 Muzzarelli Riccardo A A,Muzzarelli C,Cosani A,et al.6-oxychitins,novel hyaluronan-like regiospecifically carboxylated chitins[J]. Carbohydrate Polymers,1999,39(4):361.
13 Yoo S H,Lee J S,Park S Y,et al. Effects of selective oxidation of chitosan on physical and biological properties[J]. International Journal of Biological Macromolecules,2005,35(1-2):27.
14 Fan Y M,Saito T,Isogai A. TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils[J]. Carbohydrate Polymers,2009,77(4):832.
15 Semmelhack M F,Chou C S,Cortes D A. Nitroxyl-mediated electro-oxidation of alcohols to aldehydes and ketones[J]. Journal of the American Chemical Society,1983,105(13):4492.
16 Nooy A E J,Besemer A C,van Bekkum H. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism[J]. Tetrahedron,1995,51(29):8023.
17 Isogai A,Kato Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation[J]. Cellulose,1998,5(3):153.
18 Zhou Y,Jiang S,Jiao Y,et al. Synergistic effects of nanochitin on inhibition of tobacco root rot disease[J]. International Journal of Biological Macromolecules,2017,99:205.
19 Negrea P,Caunii A,Sarac I,et al. The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass[J]. Digest Journal of Nanomaterials & Biostructures,2015,10(4):1129.
20 Madhumathi K,Sudheesh Kumar P T,Abhilash S,et al. Development of novel chitin/nanosilver composite scaffolds for wound dres-sing applications[J]. Journal of Materials Science Materials in Medicine,2010,21(2):807.
21 Salaberria A M,Fernandes S C M,et al. Processing of α-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger[J]. Carbohydrate Polymers,2015,116:286.
22 Tan T S,Chin H Y,et al. Structural alterations,pore generation,and deacetylation of α-and β-chitin submitted to steam explosion[J]. Carbohydrate Polymers,2015,122:321.
23 Ifuku S,Hori T,Izawa H,et al. Preparation of zwitterionically charged nanocrystals by surface TEMPO-mediated oxidation and partial deacetylation of α-chitin[J]. Carbohydrate Polymers,2015,122:1.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 张雪飞, 白景元, 管仁国, 刘燕, 周天国. 利用几何优化的搅拌设备改善半固态搅拌法制备的B4Cp/A356复合材料的颗粒分布均匀性[J]. 材料导报, 2019, 33(2): 298-303.
[3] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[4] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[5] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[6] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[7] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[8] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[9] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[10] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[11] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[12] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[13] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[14] 潘亚鸽, 朱凌波, 唐钱, 黄清华, 李新功. 麦秸/木材均质复合无机碎料板的制备及其性能*[J]. 《材料导报》期刊社, 2017, 31(4): 25-29.
[15] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed