Please wait a minute...
材料导报  2018, Vol. 32 Issue (10): 1597-1601    https://doi.org/10.11896/j.issn.1005-023X.2018.10.005
  材料研究 |
TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征
李雪云1,2,王合中1,2
1 河南农业大学农业纳米研究中心,郑州 450002;
2 河南农业大学植物保护学院,郑州 450002
Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers
LI Xueyun1,2, WANG Hezhong1,2
1 NanoAgro Center, Henan Agricultural University, Zhengzhou 450002;
2 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
下载:  全 文 ( PDF ) ( 1607KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以虾壳几丁质为原料,利用TEMPO-NaBr-NaClO选择性氧化体系制备羧基化纳米几丁质晶须粒子。测定了反应体系中pH值与NaClO(13%有效氯)含量的变化对几丁质羧基化的影响,研究了生产高羧基含量和小颗粒粒度纳米几丁质晶须的最佳反应条件。利用傅里叶变换红外光谱、透射电子显微镜、动态光散射对制备的负电荷纳米几丁质晶须粒子进行结构表征,测定产品水悬浮液的有效粒径和有效电位;采用电导率法测定负电荷纳米几丁质的羧基含量。实验结果表明:在反应体系B1(pH=10.5,V(NaClO)=15 mL)中,制备的负电荷纳米几丁质羧基含量最大,达(3.16±0.23) mmol/g,纳米晶须粒子流体动力学粒径(Z-ave-rage)为(113.97±2.29) nm,Zeta电位为(-38.73±4.49) mV;在反应体系B0(pH=10.5,V(NaClO)=18 mL)中,制备的NC-晶须的羧基含量、粒子Z-average和Zeta电位分别为(3.00±0.41) mmol/g、(106.13±0.38) nm和(-41.41±6.83) mV。上述两种条件制备的纳米几丁质晶须粒子羧基含量和Zeta电位没有显著差异,但B0晶须粒子有效粒径最小。由于纳米材料的小尺寸效应是影响纳米材料生物活性的关键因素,因此制备高生物活性的纳米几丁质晶须的最佳条件是B0,即制备条件为pH=10.5,V(NaClO)=18 mL(13%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪云
王合中
关键词:  TEMPO氧化  反应体系  纳米几丁质晶须  优化    
Abstract: Carboxylate nanochitin (NC-) whiskers were prepared from shrimp chitin by TEMPO-NaBr-NaClO selective oxidation system. The optimal condition for production of small particles size with high carboxyl content of NC- were investigated by adjusting the pH value and dosage of NaClO (13% available chlorine) in the TEMPO-mediated oxidization system. The resulted NC- whiskers were qualified by Fourier transform infrared spectrometry; the morphology, effective size and size distribution, zeta potential, and carboxyl content of NC- whiskers were examined by transmission electron microscopy, dynamic light scattering method, and conductometry, respectively. The results showed that NC- whiskers synthesized in reaction system B1 (pH=10.5,V(NaClO)=15 mL in the system) had a highest carboxyl group of (3.16±0.23) mmol/g with hydrodynamic diameter (Z-average) of (113.97±2.29) nm and (-38.73±4.49) mV for zeta potential, while the carboxyl content, particle size and zeta potential of the resulted NC- whiskers synthesized in reaction system B0 (pH=10.5, V(NaClO)=18 mL) were (3.00±0.41) mmol/g, (106.13±0.38) nm and (-41.41±6.83) mV respectively. The particle size was significantly decreased with an increase of NaClO in the reaction system at pH 10.5 but there was no significant difference in carboxyl content and zeta potential. Therefore, the optimal condition to produce NC- whisker with a high biological activity is the treatment B0 due to small-size effect of nanomaterials, which was corresponding to the pH=10.5 and V(NaClO)=18 mL in the reaction system.
Key words:  TEPMO-mediate oxidation    reaction system    nanochitin whisker    optimization
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB381  
  TB383  
基金资助: 河南省科技厅国际科技合作(144300510016);河南省教育厅重点项目(14B210037)
通讯作者:  王合中:通信作者,男,1963年生,博士,副教授,主要研究方向为生物纳米材料的制备及其在农业上的应用 E-mail:hezhongw@126.com   
作者简介:  李雪云:女,1992年生,硕士研究生,主要研究方向为生物纳米材料的制备及其在农业上的应用 E-mail:XueyunL007@163.com
引用本文:    
李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers. Materials Reports, 2018, 32(10): 1597-1601.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.005  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1597
1 Clark George L,Smith Albert F. X-ray diffraction studies of chitin,chitosan,and derivatives[J]. The Journal of Physical Chemistry,1936,40(7):863.
2 Muzzarelli Riccardo A A. Chitin[M]. Oxford: Pergamon Press Ltd,1977.
3 Goodrich Jacob D,Winter William T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement [J]. Biomacromol,2007,8(1):252.
4 Li Y M,Zhang Y,Cao Y F,et al. Research progress on selective C6 oxidation of chitosan [J].Journal of Cellulose Science and Technology,2012(2):76(in Chinese).
李一鸣,张岩,曹云峰,等.壳聚糖C6位选择性氧化的研究进展[J]. 纤维素科学与技术,2012(2):76.
5 Zhang Y,Fan Y M,Yu S Y. Research advance of chitin nano-fibers preparation by surface charging[J].Chemistry and Industry of Forest Products,2015,35(3):125(in Chinese).
张燕,范一民,余世袁.晶体表面修饰制备几丁质纳米纤维的研究进展[J].林产化学与工业,2015,35(3):125.
6 Kato Y,Kaminaga J,Matsuo R,et al. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan[J]. Carbohydrate Polymers,2004,58(4):421.
7 Saito T,Yanagisawa M,Isogai A. TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products[J]. Cellulose,2005,12(3):305.
8 Bragd Petter L,Besemer Arie C,Bekkumb Herman van. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside [J]. Carbohydrate Research,2000,328(3):355.
9 Bragd Petter L,Besemer Arie C,Bekkumb Herman van. TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates[J]. Journal of Molecular Catalysis A Chemical,2001,170(1-2):35.
10 Yang G Y,Guo Y C,Wu G H,et al. Nitroxyl radical TEMPO: An organocatalyst for highly efficient and selsctive oxidation of alcohol [J].Progress in Chemistry,2007,19(11):1727(in Chinese).
杨贯羽,郭彦春,武光辉,等.氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂[J].化学进展,2007,19(11):1727.
11 Xu M,Dai H Q,Sun X,et al. Effects of buffer solution on TEMPO-mediated oxidation [J]. Journal of Cellulose Science and Technology,2012,20(1):26(in Chinese).
徐媚,戴红旗,孙旋,等.缓冲溶液对TEMPO/NaClO/NaBr选择性氧化纤维素的影响[J].纤维素科学与技术,2012,20(1):26.
12 Muzzarelli Riccardo A A,Muzzarelli C,Cosani A,et al.6-oxychitins,novel hyaluronan-like regiospecifically carboxylated chitins[J]. Carbohydrate Polymers,1999,39(4):361.
13 Yoo S H,Lee J S,Park S Y,et al. Effects of selective oxidation of chitosan on physical and biological properties[J]. International Journal of Biological Macromolecules,2005,35(1-2):27.
14 Fan Y M,Saito T,Isogai A. TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils[J]. Carbohydrate Polymers,2009,77(4):832.
15 Semmelhack M F,Chou C S,Cortes D A. Nitroxyl-mediated electro-oxidation of alcohols to aldehydes and ketones[J]. Journal of the American Chemical Society,1983,105(13):4492.
16 Nooy A E J,Besemer A C,van Bekkum H. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism[J]. Tetrahedron,1995,51(29):8023.
17 Isogai A,Kato Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation[J]. Cellulose,1998,5(3):153.
18 Zhou Y,Jiang S,Jiao Y,et al. Synergistic effects of nanochitin on inhibition of tobacco root rot disease[J]. International Journal of Biological Macromolecules,2017,99:205.
19 Negrea P,Caunii A,Sarac I,et al. The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass[J]. Digest Journal of Nanomaterials & Biostructures,2015,10(4):1129.
20 Madhumathi K,Sudheesh Kumar P T,Abhilash S,et al. Development of novel chitin/nanosilver composite scaffolds for wound dres-sing applications[J]. Journal of Materials Science Materials in Medicine,2010,21(2):807.
21 Salaberria A M,Fernandes S C M,et al. Processing of α-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger[J]. Carbohydrate Polymers,2015,116:286.
22 Tan T S,Chin H Y,et al. Structural alterations,pore generation,and deacetylation of α-and β-chitin submitted to steam explosion[J]. Carbohydrate Polymers,2015,122:321.
23 Ifuku S,Hori T,Izawa H,et al. Preparation of zwitterionically charged nanocrystals by surface TEMPO-mediated oxidation and partial deacetylation of α-chitin[J]. Carbohydrate Polymers,2015,122:1.
[1] 杨彪, 韩泽民, 段绍米, 黄宏彬, 吴照刚, 彭飞云. 基于混沌博弈理论的多源微波加热温度均匀性优化[J]. 材料导报, 2025, 39(3): 23100217-8.
[2] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[3] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[4] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[5] 徐喻琼, 钟紫珊, 郑黔松. 基于几何优化的复合材料胶接接头强度改进的研究进展[J]. 材料导报, 2024, 38(24): 23090088-9.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[8] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[9] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[10] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[11] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[12] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[13] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[14] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[15] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed