Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080185-7    https://doi.org/10.11896/cldb.22080185
  无机非金属及其复合材料 |
磁性Ce-La-MOFs@Fe3O4的除氟性能
宋江燕1,2, 翟涛2, 温倩3, 周融融2, 杨为森2, 简绍菊2, 潘文斌1, 胡家朋2,*
1 福州大学环境与安全工程学院,福州 350001
2 武夷学院生态与资源工程学院,福建省生态产业绿色技术重点实验室,福建 武夷山 354300
3 武夷学院数学与计算机学院,福建 武夷山 354300
Defluoridation Performance of Magnetic Ce-La-MOFs@Fe3O4
SONG Jiangyan1,2, ZHAI Tao2, WEN Qian3, ZHOU Rongrong2, YANG Weisen2, JIAN Shaoju2, PAN Wenbin1, HU Jiapeng2,*
1 College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China
2 Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, Fujian, China
3 College of Mathematics and Computer Science, Wuyi University, Wuyishan 354300, Fujian, China
下载:  全 文 ( PDF ) ( 10453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水热法制备了Ce-La-MOFs@Fe3O4复合材料,研究了Ce-La-MOFs@Fe3O4对水溶液中F-的吸附性能,并通过响应曲面法优化了吸附条件。实验结果表明:在pH=3.6、实验温度为40 ℃、初始氟离子浓度为17.4 mg/L的条件下,Ce-La-MOFs@Fe3O4的吸附效果最佳,F-去除率可达94.5%。除氟特性实验数据更适合用Langmuir模型进行描述,拟合得到最大吸附容量(qmax)为147.23 mg/g,热力学参数ΔGo、ΔHo和ΔSo表明该吸附反应是一个自发吸热的熵增过程。动力学研究表明Ce-La-MOFs@Fe3O4对F-的吸附符合准二级反应动力学过程。对复合材料的形貌和结构进行了表征分析,并结合吸附热力学和动力学研究探讨了吸附机理,该吸附过程主要是离子交换和静电吸附共同作用。共存离子实验、循环再生实验结果显示,Ce-La-MOFs@Fe3O4对F-具有较好的选择性,该复合材料的再生性能较好,回收率可达96%,两次循环后对F-的去除率仍达81.74%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋江燕
翟涛
温倩
周融融
杨为森
简绍菊
潘文斌
胡家朋
关键词:  磁性Ce-La-MOFs@Fe3O4  除氟  吸附  响应曲面优化    
Abstract: In the present work, Ce-La-MOFs@F3O4 composites were prepared via hydrothermal method, and the adsorption performance of Ce-La-MOFs@Fe3O4 on F- in aqueous solution was investigated, and the adsorption conditions were optimized by response surface method. The experimental results show that the best adsorption effect of Ce-La-MOFs@Fe3O4 is achieved at pH=3.6, experimental temperature of 40 ℃, and initial fluoride ion concentration of 17.4 mg/L, and the F- removal efficiency could reach 94.5%. The experimental datas of fluoride removal were more suitable to be described by Langmuir isotherm model, and the maximum adsorption capacity (qmax) is 147.23 mg/g. The thermodynamic parameters ΔGo, ΔHo and ΔSo indicated that the adsorption reaction is anentropy-increasing process with spontaneous heat absorption, and kinetic study show that the adsorption of F- by Ce-La-MOFs@Fe3O4is well fitted with the pseudo second order model. The morphology and structure of the composites were characterized and analyzed, and the adsorption mechanisms were explored in conjunction with the adsorption thermodynamic and kinetic studies, which were mainly a combination of ion-exchange action and electrostatic adsorption. The results of co-existing ion experiments and regeneration experiments show that Ce-La-MOFs@Fe3O4 has ahigh selectivity for F-. And the regeneration perfor-mance of Ce-La-MOFs@Fe3O4 is so excellent that the recovery rate can reach 96%. After two cycles, the removal efficiency still reached 81.74% of F-.
Key words:  magnetic Ce-La-MOFs@Fe3O4    defluoridation    adsorption    response surface optimization
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X52  
基金资助: 国家自然科学基金(61903288);福建省自然科学基金(2019J01829;2019J01830);福建省教育厅项目(FBJG20210043);南平市科技项目(2022-ZXHZ-002;N2020Z015);武夷学院师生共创科研团队项目(2020-SSTD-05)
通讯作者:  *胡家朋,博士,武夷学院生态与资源工程学院教授、硕士研究生导师。目前主要从事MOF材料制备及其吸附应用研究,近年来,在环境功能材料设计制备及应用领域发表论文80多篇,授权国家发明专利35项。wyuwqhjp@163.com   
作者简介:  宋江燕,2021年毕业于天津城建大学,获得工学学士学位。现为福州大学环境与安全工程学院硕士研究生,在胡家朋教授和潘文斌教授的指导下进行研究。目前主要从事MOF材料的制备及除氟性能的研究。
引用本文:    
宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
SONG Jiangyan, ZHAI Tao, WEN Qian, ZHOU Rongrong, YANG Weisen, JIAN Shaoju, PAN Wenbin, HU Jiapeng. Defluoridation Performance of Magnetic Ce-La-MOFs@Fe3O4. Materials Reports, 2024, 38(4): 22080185-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080185  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22080185
1 Kim W, Singh R, Smith J A. Scientific Report, 2020, 10(1), 5759.
2 Zhang Y Y, Qian Y, Li W, et al. Science of the Total Environment, 2019, 683, 609.
3 Hu Y S. Guangdong Chemical Industry, 2021, 48(18), 112 (in Chinese).
胡永胜. 广东化工, 2021, 48(18), 112.
4 He J Y, Yang Y, Wu Z J, et al. Journal of Environmental Chemical Engineering, 2020, 8(6), 104516.
5 Zhang Q X, Zhang C, Xu Y, et al. Journal of Green Science and Technology, 2021, 23(12), 46 (in Chinese).
张启贤, 张成, 徐瑶, 等. 绿色科技, 2021, 23(12) 46.
6 Das D, Nandi B K. Journal of Dispersion Science and Technology, 2018, 40(8), 1136.
7 Luo S, Zhu M, Tian B H, et al. Industrial Water Treatment, 2022, 42(12), 1(in Chinese).
罗胜, 朱铭, 田秉晖, 等. 工业水处理, 2022, 42(12), 1.
8 Bejaoui I, Mnif A, Hamrouni B. Separation Science and Technology, 2014, 49(8), 1135.
9 Tang X F, Zhou C Y, Xia W, et al. Chemical Engineering Journal, 2022, 446, 137299.
10 Zhao X D, Liu D H, Huang H L, et al. Microporous and Mesoporous Materials, 2014, 185, 72.
11 Haldar D, Duarah P, Purkait M K. Chemosphere, 2020, 251, 126388.
12 Zhang Q, Zhou Y M, Yao Q Z, et al. Environmental Science and Pollution Research, DOI: 10. 1007/s11356-022-21177-y.
13 Duan P Z, Jia X B, Hou X K, et al. Research of Environmental Science, 2021, 34(5), 1139 (in Chinese).
段平洲, 贾晓波, 后希康, 等. 环境科学研究, 2021, 34(5), 1139.
14 Zhao X L, Wang J M, Wu F C, et al. Journal of Hazardous Materials, 2010, 173(1-3), 102.
15 Zhang Y H, Lin X Y, Zhou Q S, et al. Applied Surface Science, 2016, 389, 34.
16 Yan B W, Ye C W, Gong R, et al. Research of Environmental Science, 2019, 32(4), 709 (in Chinese).
严博文, 叶长文, 龚锐, 等. 环境科学研究, 2019, 32(4), 709.
17 Wang N N, Zhao Q, Xu H, et al. Chemosphere, 2018, 210, 624.
18 Zhao J Y, Hu J P, Liu R L, et al. Chemistry, 2021, 84(1), 75.
19 Kuerbanjiang·Nuermaiti, Renaguli·Abudureheman. Chemical industry times, 2022, 36(2), 22 (in Chinese).
库尔班江·努尔麦提, 热娜古丽·阿不都热合曼. 化工时刊, 2022, 36(2), 22.
20 Du Y, Wang X, Nie G Z, et al. Journal of Colloid and Interface Science, 2020, 580, 234.
21 Wang J G, Chen N, Feng C P, et al. Environmental Science and Pollution Research, 2018, 25(16), 15326.
22 Lim D T, Tuyen T N, Nhiem D N, et al. Journal of Nanomaterials, 2021, 2021, 1.
23 Yin C, Huang Q L, Zhu G P, et al. Journal of Colloid and Interface Science, 2022, 607, 1762.
24 Zhang Q R, Bolisetty S, Cao Y P, et al. Angewandte Chemie-Interantional Edition, 2019, 58(18), 6012.
25 Jian S J, Shi F S, Hu R B, et al. Composites Communications, 2022, 33, 101194.
26 Yang Y Q, Li X Y, Gu Y X, et al. Surfaces and Interfaces, 2022, 28, 101649.
27 Thathsara S K T, Cooray P L A T, Journal of Environmental Management, 2018, 207, 387.
28 He Y X, Zhang L M, An X, et al. Science of the Total Environment, 2019, 688, 184.
29 Rego R M, Sriram G, Ajeya K V, et al. Journal of Hazardous Materials, 2021, 416, 125941.
30 Jeyaseelan A, Viswanathan N. Journal of Chemical and Engineering Data, 2020, 65(11), 5328.
31 Zhao J Y, Su L M, Xu J, et al. Journal of Synthetic Crystals, 2020, 49(9), 1705 (in Chinese).
赵瑨云, 苏丽鳗, 徐婕, 等. 人工晶体学报, 2020, 49(9), 1705.
32 Han M Y, Zhang J H, Hu Y Y, et al. Journal of Chemical and Enginee-ring Data, 2019, 64(8), 3641.
33 Alhassan S I, Wang H Y, He Y J, et al. Journal of Hazardous Materials, 2022, 430, 128401.
34 Tao W, Zhong H, Pan X B, et al. Journal of Hazardous Materials, 2020, 384, 121373.
35 Kiran M S, Bhandari R, Nehra A, et al. Journal of Dispersion Science and Technology, 2021, 42(10), 1550.
36 Gasparotto J M, Roth D, Perilli A L D, et al. Journal of Environmental Chemical Engineering, 2021, 9(6), 106350.
37 Jian S J, Cheng Y T, Hong H F, et al. Journal of Synthetic Crystals, 2022, 51(2), 316 (in Chinese).
简绍菊, 程意婷, 洪慧芳, 等. 人工晶体学报, 2022, 51(2), 316.
38 Yang W S, Liu Y F, Shi F S, et al. Acta Materiae Compositae Sinica, 2023, 40(6), 3385(in Chinese).
杨为森, 刘毅飞, 史丰硕, 等. 复合材料学报, 2023, 40(6), 3385.
39 Jeyaseelan A, Viswanathan N. Journal of Molecular Liquids, 2021, 326, 115163.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[8] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[9] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[10] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[11] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[12] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[13] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[14] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[15] 彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed