Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23090093-8    https://doi.org/10.11896/cldb.23090093
  高分子与聚合物基复合材料 |
ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究
陈轶思1, 张宏图1, 王彬彬2, 李瑶1,*
1 河南理工大学安全科学与工程学院,河南 焦作 454003
2 河南理工大学材料科学与工程学院,河南 焦作 454003
Research on the Preparation of ZIF-8 Derived Nitrogen-doped Porous Carbon and Its CH4/N2 Adsorptive Separation from Low Concentration Coalbed Methane
CHEN Yisi1, ZHANG Hongtu1, WANG Binbin2, LI Yao1,*
1 College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 5749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了充分利用低浓度煤层气,同时减缓全球变暖的趋势,开发一种制备方法简单、性能优异的多孔碳吸附剂,以实现CH4/N2混合物中CH4的有效分离是一项势在必行且具有挑战的工作。本工作以ZIF-8为前驱体和自牺牲模板,成功制备了氮掺杂多孔碳吸附剂,系统分析了碳化温度和碳化时间对所制备碳材料孔隙结构和氮含量的影响,结合CH4和N2的等温吸附测试,分析碳材料对CH4/N2的吸附分离性能。在碳化温度为1 000 ℃、碳化时间为1 h时,所得的碳材料NPC-1000-1展现出最优的CH4吸附量(1.52 mmol/g)和CH4/N2分离系数,根据亨利定律计算,其对CH4/N2的选择性系数为3.73;根据理想溶液吸附理论(IAST),在0.1 MPa压力下,其对二元混合气体CH4/N2(30/70)的分离选择性系数为4.72,这主要归因于该样品优异的孔隙结构和理想氮含量的协同作用。本研究为多孔碳吸附剂的制备提供了新思路,同时为煤层气的有效开发利用和环境保护提供了理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈轶思
张宏图
王彬彬
李瑶
关键词:  ZIF-8  氮掺杂  多孔碳  CH4/N2吸附分离    
Abstract: In order to make the best use of low concentration coalbed methane (CBM), simultaneously slow down the trend of global warming, it is an imperative and challenging work to develop a porous carbon adsorbent for the realization of effective separation of CH4 from CH4/N2 mixture. Herein, N-doped porous carbon adsorbent has been successfully synthesized by using ZIF-8 as precursor and self-sacrificing template. The effects of carbonization temperature and carbonization time on the porosity structure and nitrogen content of the as-prepared carbon materials have been systematically analyzed. Combined with the testing of isothermal adsorption of CH4 and N2, the properties of carbon materials for CH4/N2 adsorptive separation have been analyzed. Under the carbonization temperature of 1 000 ℃ and the carbonization time of 1 h, the as-prepared carbon material NPC-1000-1 showed the optimal CH4 adsorption capacity of 1.52 mmol/g and CH4/N2 separation performance. Accor-ding to Henry’s law, the CH4/N2 selectivity coefficient was 3.73, while according to the ideal solution adsorption theory (IAST), the selectivity coefficient for binary gas CH4/N2 (30/70) was 4.72 under a certain pressure of 0.1 MPa, which was mainly contributed to the synergistic effect of the excellent porosity structure and desirable nitrogen content of the sample. This study provides a new approach for the preparation of porous carbon adsorbents and a theoretical support for the effective development and utilization of coalbed methane and environmental protection.
Key words:  ZIF-8    N-doped    porous carbon    CH4/N2 adsorptive separation
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TE991  
基金资助: 国家自然科学基金青年基金(42002164);安全学科“双一流”建设学科培育项目(AQ20230707)
通讯作者:  * 李瑶,河南理工大学讲师、硕士研究生导师。2005 年毕业于沈阳师范大学获得学士学位,2008 年毕业于东北师范大学获得硕士学位,2016 年毕业于北京理工大学获得博士学位。主要从事多孔碳的设计、合成及煤层气的吸附分离研究。在国际期刊Carbon、Energy、Journal of Environmental Chemical Engineering等发表论文10 余篇,出版专著1 部,授权发明专利3项。 leayao35@hpu.edu.cn   
作者简介:  陈轶思,2021 年毕业于河南理工大学获得学士学位,现为河南理工大学安全科学与工程学院硕士研究生,主要研究方向为ZIF-8衍生氮掺杂多孔碳及对CH4/N2的吸附分离。
引用本文:    
陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
CHEN Yisi, ZHANG Hongtu, WANG Binbin, LI Yao. Research on the Preparation of ZIF-8 Derived Nitrogen-doped Porous Carbon and Its CH4/N2 Adsorptive Separation from Low Concentration Coalbed Methane. Materials Reports, 2024, 38(24): 23090093-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090093  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23090093
1 Howarth R W, Santoro R, Ingraffea A. Climatic Change, 2011, 106(4), 679.
2 El Hachem K, Kang M. Science of the Total Environment, 2022, 823, 153491.
3 Águeda M V I, Delgado D J A, Álvarez-Torrellas S, et al. Chemical Engineering Journal, 2019, 361, 1007.
4 Liu K W, Gu M, Xian X F. Modern Chemical Industry, 2007, 27(12), 15 (in Chinese).
刘克万, 辜敏, 鲜学福. 现代化工, 2007, 27(12), 15.
5 Gu M, Chen C G, Xian X F. Journal of China Coal Society, 2001, 26(3), 323 (in Chinese).
辜敏, 陈昌国, 鲜学福. 煤炭学报, 2001, 26(3), 323.
6 Wei X Q, Chen J. Low Temperature and Specialty Gases, 2002, 20(3), 1(in Chinese).
魏玺群, 陈健. 低温与特气, 2002, 20(3), 1.
7 Li R, Yang Y, Zhang Z, et al. Journal of Membrane Science, 2023, 685, 121983.
8 Chuah C Y, Lee J, Bao Y, et al. Journal of Membrane Science, 2021, 622, 119031.
9 Ma Y, He X, Tang S, et al. Journal of Environmental Chemical Engineering, 2022, 10(2), 107274.
10 Ma X, Li L, Zeng Z, et al. Chemical Engineering Journal, 2019, 363, 49.
11 Wang S, Wu P, Fu J, et al. Separation and Purification Technology, 2021, 274, 119121.
12 Gu M, Zhang B, Qi Z, et al. Separation and Purification Technology, 2015, 146, 213.
13 Dong Z, Li B, Shang H, et al. Aiche Journal, 2021, 67(9).
14 Yuan D, Zheng Y, Li Q, et al. Powder Technology, 2018, 333, 377.
15 Xie Q, Zhang X L, Liang D C, et al. Coal Science and Technology, 2021, 49(1), 100(in Chinese).
解强, 张香兰, 梁鼎成, 等. 煤炭科学技术, 2021, 49(1), 100.
16 Zhang P, Sun F, Xiang Z, et al. Energy & Environmental Science, 2014, 7(1), 442.
17 Pan Y, Xue M, Chen M, et al. Inorganic Chemistry Frontiers, 2016, 3(9), 1112.
18 Zhang L, Su Z, Jiang F, et al. Nanoscale, 2014, 6(12), 6590.
19 Aijaz A, Fujiwara N, Xu Q. Journal of the American Chemical Society, 2014, 136(19), 6790.
20 Abbasi Z, Shamsaei E, Leong S K, et al. Microporous and Mesoporous Materials, 2016, 236, 28.
21 Liu Y, Xu X, Wang M, et al. Chemical Communications (Cambridge, England), 2015, 51(60), 12020.
22 Srinivas G, Zheng G X. Chemsuschem, 2015, 8(12), 2123.
23 Matthias T K K A V, Abbasi Z. De Gruyter, 2015.
24 Bai F, Xia Y, Chen B, et al. Carbon, 2014, 79, 213.
25 Liu C, Dang Y, Zhou Y, et al. Adsorption, 2012, 18(3-4), 321.
26 Du S, Wu Y, Wang X, et al. AIChE Journal, 2020, 66, e16231.
27 Shi Q, Wang J, Shang H, et al. Separation and Purification Technology, 2020, 230, 115850.
28 Shang H, Li Y, Liu J, et al. Chinese Journal of Chemical Engineering, 2019, 27(5), 1044.
29 Yang J, Tang X, Liu J, et al. Chemical Engineering Journal, 2021, 406, 126599.
30 Zhang P, Wang J, Fan W, et al. Chemical Engineering Journal, 2019, 375, 121931.
31 Möllmer J, Lange M, Möller A, et al. Journal of Materials Chemistry, 2012, 22(20), 10274.
32 Tang R, Dai Q, Liang W, et al. Chemical Engineering Journal, 2020, 384, 123388.
33 Li Y, Xu R, Wang B, et al. Nanomaterials, 2019, 9(2), 266.
34 Wang J, Zhang P, Liu L, et al. Chemical Engineering Journal, 2018, 348, 57.
35 Silva J A C, Ferreira A, Mendes P A P, et al. Industrial & Engineering Chemistry Research, 2015, 54(24), 6390.
36 Yuan B, Wu X, Chen Y, et al. Environmental Science & Technology, 2013, 47(10), 5474.
37 Ferreira A F P, Santos J C, Plaza M G, et al. Chemical Engineering Journal, 2011, 167(1), 1.
38 Guo Y, Hu J, Liu X, et al. Chemical Engineering Journal, 2017, 327, 564.
39 Wu X, Yuan B, Bao Z, et al. Journal of Colloid and Interface Science, 2014, 430, 78.
40 Xue C L, Cheng W P, Hao W M, et al. Journal of Chemistry, 2019, 2019, 1.
41 Hu J, Sun T, Ren X, et al. Microporous and Mesoporous Materials, 2015, 204, 73.
42 Wang Q, Yu Y, Li Y, et al. Separation and Purification Technology, 2022, 283, 120206.
43 Samanta A, Zhao A, Shimizu G K H, et al. Industrial & Engineering Chemistry Research, 2012, 51(4), 1438.
44 Sun Y, Li K, Zhao J, et al. Journal of Colloid and Interface Science, 2018, 526, 174.
[1] 覃玲霜, 刘醒, 邓立波. 葡萄糖衍生多孔碳的表面电荷调控与电吸附Cd2+性能[J]. 材料导报, 2024, 38(6): 23040284-8.
[2] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[3] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[4] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[5] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[6] 谢发之, 张梦, 张道德, 杨少华, 宋恒帅, 马钰佳, 方亮, 邵永刚. N、P/RC@Pb复合材料在铅碳电池负极中的应用[J]. 材料导报, 2024, 38(19): 23030049-9.
[7] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[8] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[9] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[10] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[11] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[12] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[13] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[14] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[15] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed