Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100210-14    https://doi.org/10.11896/cldb.21100210
  高分子与聚合物基复合材料 |
蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展
贾少培1, 宗泳吉1, 黄权1, 李其松1, 张茜1, 李彩玉2, 王志新1, 穆云超1,*
1 中原工学院材料与化工学院,郑州 451191
2 中原工学院电子信息学院,郑州 451191
Research Progress of Protein-derived Nitrogen-doped Carbon Materials as Electrochemical Energy Materials
JIA Shaopei1, ZONG Yongji1, HUANG Quan1, LI Qisong1, ZHANG Qian1, LI Caiyu2, WANG Zhixin1, MU Yunchao1,*
1 School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
2 School of Electronic and Information, Zhongyuan University of Technology, Zhengzhou 451191, China
下载:  全 文 ( PDF ) ( 17761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电化学储能和能源转换技术是解决可持续能源与环境问题的重要途径,其电极材料的成本与性能成为规模化应用的关键。氮掺杂碳材料因其独特的物化性质被广泛应用到电化学能源材料中,其中蛋白质衍生氮掺杂碳材料因其原材料丰富、合成简单、环境友好等优点而备受关注,但明晰前驱体和制备工艺对结构性质的影响机制及在应用中的构效关系成为其走向规模化应用的理论基础和关键步骤。本综述调研了近年来蛋白质衍生氮掺杂碳材料用作电化学能源材料的合成与性能情况,先综合分析各类蛋白质衍生碳材料的概况并总结原材料选择的条件;然后分析了不同制备方法及工艺参数对氮掺杂碳材料结构性质的调控和电化学性能提升的作用机制,并详细讨论了蛋白质衍生氮掺杂碳材料在电化学储能和电催化能源转换应用中的构效关系;最后提出蛋白质衍生氮掺杂碳材料在电化学能源材料规模化应用中所要面临的挑战和发展前景。期望本综述有助于新型电化学能源材料的设计开发与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾少培
宗泳吉
黄权
李其松
张茜
李彩玉
王志新
穆云超
关键词:  氮掺杂碳材料  蛋白质  电化学能源装置  储能材料  电催化能源转换材料    
Abstract: Electrochemical energy storage and energy conversion technology is an important way to solve sustainable energy and environmental problems, and the cost and performance of its electrode materials are the key to commercial applications. Nitrogen-doped carbon materials are widely used in electrochemical energy materials because of their unique physical and chemical properties. Protein-derived nitrogen-doped carbon materials have attracted much attention due to their abundant raw materials, simple synthesis and eco-friendly, but the influence mechanism of precursors and preparation process on structure and properties, and the structure-effect relationship in applications still needs to be clearly established, which is the theoretical basis and key step to achieving the large-scale applications. This review investigates the synthesis and perfor-mance data of protein-derived nitrogen-doped carbon materials used as electrochemical energy materials in recent years. Firstly, we summarize the conditions of raw material selection by comprehensively analyzing the data of various protein-derived carbon materials. Then we analyze the influence mechanisms of different preparation methods and process parameters on the structure and performance of nitrogen-doped carbon materials. In addition, we discuss in detail the structure-effect relationship of protein-derived nitrogen-doped carbon materials in electrochemical energy storage and electrocatalytic energy conversion applications. Finally, we present the challenges and development prospects of protein-derived nitrogen-doped carbon materials in the large-scale application of electrochemical energy materials. We expect this review to contribute to the design, development and application of novel electrochemical energy materials.
Key words:  nitrogen-doped carbon material    protein    electrochemical energy device    energy storage material    electrocatalytic energy conversion material
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51902358)
通讯作者:  * 穆云超,中原工学院材料与化工学院教授、硕士研究生导师。1994年东北重型机械学院材料物理专业本科毕业后到郑州磨料磨具磨削研究所工作,2002年至今中原工学院到材料与化工学院任教,2006年郑州大学金属材料工程专业硕士毕业,2011年燕山大学材料物理与化学专业博士毕业。目前主要从事超硬材料及制品、碳材料等方面的研究工作。获得国家科技进步二等奖1项,省部级奖2项,在国内外期刊发表科研论文50余篇,其中被SCI和El收录20余篇。yunchaomu@126.com   
作者简介:  贾少培,中原工学院材料与化工学院讲师。2013年河南工业大学材料科学与工程本科毕业,2019年燕山大学材料学博士毕业后到中原工学院工作至今。目前主要从事异质元素掺杂碳材料的制备及其在电化学应用等方面的研究工作。发表SCI收录论文20余篇,包括Electrochimica Acta、Microporous and Mesoporous Materials、Applied Surface Science、International Journal of Hydrogen Energy等。
引用本文:    
贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
JIA Shaopei, ZONG Yongji, HUANG Quan, LI Qisong, ZHANG Qian, LI Caiyu, WANG Zhixin, MU Yunchao. Research Progress of Protein-derived Nitrogen-doped Carbon Materials as Electrochemical Energy Materials. Materials Reports, 2023, 37(15): 21100210-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100210  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100210
1 Chen Qiang, Tan Xiaofei, Liu Yunguo, et al. Journal of Materials Che-mistry A, 2020, 8(12), 5773.
2 Wang Jian, Kong Hui, Zhang Jinying, et al. Progress in Materials Science, 2021, 116, 100717.
3 Andreas Hirsch. Nature Materials, 2010, 9(11), 868.
4 Zhou Xiaoli, Zhang Hua, Shao Limng, et al. Waste and Biomass Valorization, 2021, 12(4), 1699.
5 Ana Casanova, Jesus Iniesta, Alicia Gomis-Berenguer. Analyst, DOI:10. 1039/D1AN01978C.
6 Fu Ang, Wang Chaozhi, Pei Fei, et al. Small, 2019, 15(10), 1804786.
7 Luo Xianyou, Chen Yong, Mo Yan . New Carbon Materials, 2021, 36(1), 49.
8 Yang Yunxia, Chiang Ken, Burke Nick . Catalysis Today, 2011, 178(1), 197.
9 Michio Inagaki, Masahiro Toyoda, Yasushi Soneda, et al. Carbon, 2018, 132, 104.
10 Hu Chuangang, Dai Liming . Advanced Materials, 2019, 31(7), 1804672.
11 M. Matsagar Babasaheb, Yang Renxuan, Dutta Saikat, et al. Journal of Materials Chemistry A, 2021, 9(7), 3703.
12 Titirici M M, White R J, Zhao L. Green, 2012, 2(1), 25.
13 Ju-Won Jeon, Ronish Sharma, Praveen Meduri, et al. ACS Applied Materials & Interfaces, 2014, 6(10), 7214.
14 Yu Jianhua, Li Xu, Cui Zhenxing, et al. Renewable Energy, 2021, 163, 375.
15 Bi Zhihong, Kong Qingqiang, Cao Yufang, et al. Journal of Materials Chemistry A, 2019, 7(27), 16028.
16 Li Qian, Liu Yongpeng, Wang Yang, et al. Ionics, 2020, 26(10), 4765.
17 Li Zijiong, Guo Dongfang, Liu Yanyue, et al. Chemical Engineering Journal, 2020, 397, 125418.
18 Geon-Hyoung An, Hyeonjin Kim, Hyo-Jin Ahn. Applied Surface Science, 2019, 463, 18.
19 Xu Xuejiao, Wu Fuzhong, Yang Wanliang, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(39), 13215.
20 Lv Dong, Zhang Tongcheng, Wang Danyang, et al. Industrial Crops and Products, 2021, 170, 113750.
21 Hyun-Gi Jo, Kue-Ho Kim, Hyo-Jin Ahn. RSC Advances, 2021, 11(20), 12209.
22 Ouyang Tian, Cheng Kui, Gao Yinyi, et al. Journal of Materials Chemistry A, 2016, 4(25), 9832.
23 Guo Shasha, Chen Yaxin, Shi Liluo, et al. Applied Surface Science, 2018, 437, 136.
24 Rohan Gokhale, Sreekuttan M. Unni, Dhanya Puthusseri, et al. Physical Chemistry Chemical Physics, 2014, 16(9), 4251.
25 Sara-Maaria Alatalo, Kaipei Qiu, Kathrin Preuss, et al. Carbon, 2016, 96, 622.
26 Yang Jingqi, Wang Yixiang, Luo Jingli, et al. ACS Omega, 2018, 3(4), 4647.
27 Liu Simin, Liang Yeru, Zhou Wan, et al. Journal of Materials Chemistry A, 2018, 6(25), 12046.
28 Chen Xiufang, Zhang Junyi, Zhang Bo, et al. Scientific Reports, 2017, 7(1), 7362.
29 Zhao Guangzhen, Li Yanjiang, Zhu Guang, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(14), 12052.
30 Yang Jingqi, Wang Yixiang, Luo Jingli, et al. Industrial Crops and Products, 2018, 121, 226.
31 Yan Dong, Yu Caiyan, Zhang Xiaojie, et al. Electrochimica Acta, 2016, 191, 385.
32 Ma Yanwen, Zhao Jin, Zhang Lingrong, et al. Carbon, 2011, 49(15), 5292.
33 Zhang Jian, Wu Siyu, Chen Xu, et al. Journal of Power Sources, 2014, 271, 522.
34 Shi Ruiying, Han Cuiping, Li Hongfei, et al. Journal of Materials Chemistry A, 2018, 6(35), 17057.
35 Zhao Junfeng, Wen Xuemin, Xu Huashan, et al. Journal of Alloys and Compounds, 2019, 788, 397.
36 Xiang Mingwu, Wang Yan, Wu Jinhua, et al. Electrochimica Acta, 2017, 227, 7.
37 Long Chao, Zhuang Jianle, Xiao Yong, et al. Journal of Power Sources, 2016, 310, 145.
38 Zhang Jiawei, Cai Yurong, Zhong Qiwei, et al. Nanoscale, 2015, 7(42), 17791.
39 Wu Zhulian, Zhang Pu, Gao Mingxuan, et al. Journal of Materials Chemistry B, 2013, 1(22), 2868.
40 Song Peng, Shen Xiaoping, He Wenfeng, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(14), 12206.
41 Hou Jianhua, Cao Chuanbao, Idrees Faryal, et al. ACS Nano, 2015, 9(3), 2556.
42 Wang Liqiang, Liang Kaixin, Deng Liu, et al. Applied Catalysis B: Environmental, 2019, 246, 89.
43 Sam Daniel Kobina, Wang Wenbo, Gong Shanhe, et al. International Journal of Hydrogen Energy, 2021, 46(41), 21525.
44 Yang Jiewei, Tan Zhixiang, Chen Xun, et al. Journal of Colloid and Interface Science, 2021, 599, 381.
45 Lian Yue, Xu Zongying, Wang Dawei, et al. Journal of Alloys and Compounds, 2021, 850, 156808.
46 Wen Xiaofeng, Wei Xing, Wang Gongwei, et al. International Journal of Electrochemical Science, 2020, 15, 12252.
47 Jia Haiyang, Qiu Shi, Li Wenyi, et al. Journal of Electroanalytical Chemistry, 2020, 863, 114057.
48 Chen Jiucun, Liu Yinqin, Li Wenjun, et al. RSC Advances, 2015, 5(119), 98177.
49 Chaudhari Kiran N, Song Minyoung, Yu Jongsung. Small, 2014, 10(13), 2625.
50 Guo Zihan, Zhou Qingwen, Wu Zhaojun, et al. Electrochimica Acta, 2013, 113, 620.
51 Si Weijiang, Zhou Jin, Zhang Shumei, et al. Electrochimica Acta, 2013, 107, 397.
52 Zheng Fengyi, Li Ruisong, Ge Shiyu, et al. Journal of Power Sources, 2020, 446, 227356.
53 Tian Weiqian, Gao Qiuming, Zhang Liming, et al. Journal of Materials Chemistry A, 2016, 4(22), 8690.
54 Chen Huaxia, Lu Xingyu, Wang Haihua, et al. Journal of Energy Chemistry, 2020, 49, 348.
55 Jia Shaopei, Wang Yanhui, Xin Guoxiang, et al. Electrochimica Acta, 2016, 196, 527.
56 Liang Kaixin, Wang Liqiang, Xu Ying, et al. Electrochimica Acta, 2020, 335, 135666.
57 Guo Yaqi, Liu Wei, Wu Ruitao, et al. ACS Applied Materials & Interfaces, 2018, 10(44), 38376.
58 Song Huihui, Li Hao, Wang Hui, et al. Electrochimica Acta, 2014, 147, 520.
59 Huang Wentao, Zhang Hao, Huang Yaqin, et al. Carbon, 2011, 49(3), 838.
60 Guo Chaozhong, Chen Changguo, Luo Zhongli . Journal of Power Sources, 2014, 245, 841.
61 Xu Zongying, Li Yu, Li Dandan, et al. Applied Surface Science, 2018, 444, 661.
62 Zhao Gongyuan, Chen Chong, Yu Dengfeng, et al. Nano Energy, 2018, 47, 547.
63 Zhou Yibei, Ren Juan, Xia Li, et al. ChemElectroChem, 2017, 4(12), 3181.
64 Zhang Yongzhi, Chen Li, Meng Yan, et al. Journal of Power Sources, 2016, 335, 20.
65 Sun Yi, Wu Qiujie, Wang Yueda, et al. Journal of Power Sources, 2021, 512, 230530.
66 Hu Lintong, Hou Junxian, Ma Ying, et al. Journal of Materials Chemistry A, 2016, 4(39), 15006.
67 Lee Yinghui, Lee Yingfeng, Chang Kuohsin, et al. Electrochemistry Communications, 2011, 13(1), 50.
68 Sevilla M, Gu W, Falco C, et al. Journal of Power Sources, 2014, 267, 26.
69 Song Minyoung, Park Hyeanyeol, Yang Daesoo, et al. ChemSusChem, 2014, 7(6), 1755.
70 Liu Fangfang, Peng Hongliang, You Chenghang, et al. Electrochimica Acta, 2014, 138, 353.
71 Hu Yamin, Xie Kaihan, Wang Haiwen, et al. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105221.
72 Ren Qiangqiang, Zhao Changsui . Renewable and Sustainable Energy Reviews, 2015, 50, 408.
73 Malik Wahid, Golu Parte, Deodatta Phase, et al. Journal of Materials Chemistry A, 2014, 3(3), 1208.
74 White R J, Yoshizawa N, Antonietti M, et al. Green Chemistry, 2011, 13(9), 2428.
75 Marta Sevilla, Guillermo A. Ferrero, Antonio B. Fuertes. Carbon, 2017, 114, 50.
76 Jun'ichi Hayashi, Atsuo Kazehaya, Katsuhiko Muroyama, et al. Carbon, 2000, 38(13), 1873.
77 Ding Yan, Li Yunchao, Dai Yujie, et al. Energy, 2021, 216, 119227.
78 Gong Yutong, Wang Haiyan, Wei Zhongzhe, et al. ACS Sustainable Chemistry & Engineering, 2014, 2(10), 2435.
79 Diana Jiménez-Cordero, Francisco Heras, Miguel A. Gilarranz, et al. Carbon, 2014, 71, 127.
80 Gong Yutong, Wei Zhongzhe, Wang Jing, et al. Scientific Reports, 2014, 4(1), 6349.
81 Wang Huanlei, Gao Qiuming, Hu Juan . Journal of the American Che-mical Society, 2009, 131(20), 7016.
82 Yang Binbin, Zhang Deyi, He Jingjing, et al. Carbon Letters, 2020, 30(6), 709.
83 Hossein Mashhadimoslem, Mobin Safarzadeh, Ahad Ghaemi, et al. RSC Advances, 2021, 11(57), 36125.
84 Ai Fei, Liu Naiqiang, Wang Weikun, et al. Electrochimica Acta, 2017, 258, 80.
85 Noel Díez, Antonio B. Fuertes, Marta Sevilla. Energy Storage Materials, 2021, 38, 50.
86 Chen Yimai, Ji Shan, Wang Hui, et al. International Journal of Hydrogen Energy, 2018, 43(10), 5124.
87 Liu Xiaofeng, Fechler Nina, Antonietti Markus . Chemical Society Reviews, 2013, 42(21), 8237.
88 Wang Jie, Nie Ping, Ding Bing, et al. Journal of Materials Chemistry A, 2017, 5(6), 2411.
89 Tian Pengfei, Wang Yanhui, Jia Shaopei, et al. Journal of Alloys and Compounds, 2019, 806, 650.
90 Xie Lijing, Su Fangyuan, Xie Longfei, et al. Materials Chemistry Frontiers, 2020, 4(9), 2610.
91 Zhang Yujie, Chen Honglei, Wang Shoujuan, et al. Microporous and Mesoporous Materials, 2020, 297, 110032.
92 Liu Bingqiu, Zhang Qi, Wang Zhao, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8225.
93 Zhou Kai, Hu Mingxiang, He Yanbing, et al. Carbon, 2018, 129, 667.
94 Seongcho Kwon, Hyeonjun Song, Nilüfer Çakmakçı, et al. Materials Today Communications, 2021, 27, 102309.
95 Liu Bingqiu, Zhang Qi, Li Lu, et al. ACS Nano, 2019, 13(11), 13513.
96 Xu Bin, Hou Shanshan, Cao Gaoping, et al. Journal of Materials Chemistry, 2012, 22(36), 19088.
97 Ermete Antolini. Renewable and Sustainable Energy Reviews, 2016, 58, 34.
98 Mi Juan, Wang Xiaorong, Fan Ruijun, et al. Energy Fuels, 2012, 26(8), 5321.
99 Ouyang Tian, Cheng Kui, Yang Fan, et al. Journal of Materials Che-mistry A, 2017, 5(28), 14551.
100 Norazlianie Sazali. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 62(2), 151.
101 Arthi Gopalakrishnan, Sushmee Badhulika. Journal of Power Sources, 2020, 480, 228830.
102 Li Zhi, Xu Zhanwei, Tan Xuehai, et al. Energy & Environmental Science, 2013, 6(3), 871.
103 Guo Donghui, Shibuya Riku, Akiba Chisato, et al. Science, 2016, 351(6271), 361.
104 Heejin Kim, Kirak Lee, Seong Ihl Woo, et al. Physical Chemistry Chemical Physics, 2011, 13(39), 17505.
105 Zhou Tianbao, Wang Hui, Ji Shan, et al. Journal of Power Sources, 2014, 248, 427.
106 Iwazaki Tomoya, Yang Hongsheng, Obinata Ryoujin, et al. Journal of Power Sources, 2010, 195(18), 5840.
107 Lu Jing, Bo Xiangjie, Wang Huan, et al. Electrochimica Acta, 2013, 108, 10.
108 Gao Feng, Qu Jiangying, Zhao Zongbin, et al. Electrochimica Acta, 2016, 190, 1134.
109 Zheng Fangcai, Liu Dong, Xia Guoliang, et al. Journal of Alloys and Compounds, 2017, 693, 1197.
110 Vikrant Sahu, Sonia Grover, Brindan Tulachan, et al. Electrochimica Acta, 2015, 160, 244.
111 Guo Chaozhong, Liao Wenli, Chen Changguo . Journal of Power Sources, 2014, 269, 841.
112 Zhou Huang, Zhang Jian, Amiinu Ibrahim Saana, et al. Physical Chemistry Chemical Physics, 2016, 18(15), 10392.
113 Wang Rongfang, Wang Hui, Zhou Tianbao, et al. Journal of Power Sources, 2015, 274, 741.
114 Wang Huan, Bo Xiangjie, Luhana Charles, et al. Electrochemistry Communications, 2012, 21, 5.
115 Zhang Zhenxing, Zhang Yaxiong, Mu Xuemei, et al. Electrochimica Acta, 2017, 242, 100.
116 Zhao Rui, Peng Hui, Wang Hailing, et al. Journal of Energy Sto-rage, 2020, 28, 101174.
117 Zhang Shiguo, Tsuzuki Seiji, Ueno Kazuhide, et al. Angewandte Chemie International Edition, 2015, 54(4), 1302.
118 Yao Yamin, Zhang Yunqiang, Li Li, et al. ACS Applied Materials & Interfaces, 2017, 9(40), 34944.
119 Jia Shaopei, Wang Yanhui, Tian Pengfei, et al. Electrochimica Acta, 2017, 250, 16.
120 Zhao Jing, Wang Guiling, Cheng Kui, et al. Journal of Power Sources, 2020, 451, 227737.
121 Zhao Guoqing, Tang Yulin, Wan Gengping, et al. Journal of Colloid and Interface Science, 2020, 572, 151.
122 Wang Xuelei, Hu Anyu, Meng Chao, et al. Molecules, 2020, 25(2), 269.
123 Feng Wenliang, Maça Rudi Ruben, Etacheri Vinodkumar . ACS Applied Materials & Interfaces, 2020, 12(4), 4443.
124 Xu Rui, Yao Yu, Wang Haiyun, et al. Advanced Materials, 2020, 32(52), 2003879.
125 Wang Shiyong, Wang Gang, Wang Yuwei, et al. ACS Applied Materials & Interfaces, 2020, 12(39), 44049.
126 Ahsan M A, Santiago A R P, Rodriguez A, et al. Journal of Cleaner Production, 2020, 275, 124141.
127 Huang Longsheng, Zang Wenjie, Ma Yuanyuan, et al. Chemical Engineering Journal, 2021, 421, 129973.
128 Jens Peter Paraknowitsch, Arne Thomas. Energy & Environmental Science, 2013, 6(10), 2839.
129 Xu Xinlong, Zhang Xiaoming, Xia Zhangxun, et al. Journal of Energy Chemistry, 2021, 54, 579.
130 Du Cheng, Gao Yijing, Wang Jianguo, et al. Journal of Materials Chemistry A, 2020, 8(19), 9981.
131 Chen Ziliang, Qing Huilin, Wang Ruirui, et al. Energy & Environmental Science, 2021, 14(5), 3160.
132 Huang Hailong, Han Lu, Fu Xiaobin, et al. Small, 2021, 17(10), 2006807.
133 Liu Linlin, Ji Zhen, Zhao Shuyan, et al. Journal of Materials Chemistry A, 2021, 9(10), 6172.
134 Zhang Xiaofeng, Yang Feng, Chen Haixin, et al. Small, 2020, 16(44), 2004188.
135 Wu Ziping, Wang Yonglong, Liu Xianbin, et al. Advanced Materials, 2019, 31(9), 1.
136 Baohua Hou, Yingying Wang, Qiuli Ning, et al. Advanced Materials, 2019, 31(40), 1903125.
137 Li Huijun, Hao Siyue, Tian Zhen, et al. Electrochimica Acta, 2019, 321, 134624.
138 Xiao Qinghuiqiang, Yang Jinlin, Wang Xiaodong, et al. Carbon Energy, 2021, 3(2), 271.
139 Jayraj V. Vaghasiya, Carmen C. Mayorga-Martinez, Zdenek Sofer, et al. ACS Applied Materials & Interfaces, 2020, 12(47), 53039.
140 Bai Qiuhong, Li Huimin, Zhang Luwei, et al. ACS Applied Materials & Interfaces, 2020, 12(50), 55913.
141 Liang Xiaoping, Li Haifang, Dou Jinxin, et al. Advanced Materials, 2020, 32(31), 2000165.
[1] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[2] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[3] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[4] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[5] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[6] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[7] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[8] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[9] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[10] 石苗, 侯海, FiazAhmad, 尹大川. 用于蛋白质结晶的形核剂研究综述[J]. 《材料导报》期刊社, 2018, 32(11): 1820-1826.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed