Preparation and Electrocatalytic Oxygen Reduction Performance of Nitrogen Doped Regenerated Activated Carbon
YE Jiahong1,2,3,4, LI Denian2,3,4, YANG Jizhang2,3,4, ZHAO Yue2,3,4, YUAN Haoran2,3,4,*, CHEN Yong1,2,3,4
1 School of Biomass Engineering Research, South China Agricultral University, Guangzhou 510642, China 2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China 3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China 4 Guangdong Provincial Key Laboratory of New Energy and Renewable Energy Research, Development and Application, Guangzhou 510640, China
Abstract: In order to solve the problems of resource waste and environmental pollution caused by the traditional recycling of hazardous waste activated carbon, this work prepared a nitrogen-doped regenerated waste activated carbon oxygen reduction reaction (ORR) catalyst by using anti-biotic decolorization waste activated carbon as raw material and ammonia gas as nitrogen source, and the nitrogen element was bonded into the activated carbon skeleton through sp2 hybridization by high temperature pyrolysis regeneration. The physical composition, microscopic morphology and electrochemical properties of the nitrogen-doped regenerated activated carbon were analyzed. The results showed that the best perfor-mance of the prepared N-RWAC-1000-1 oxygen reduction electrocatalyst was achieved when the temperature was 1 000 ℃ and the annealing time was 1 h. The N-RWAC-1000-1 had abundant microporous and mesoporous structures with a specific surface area up to 908 m2/g. The starting potential in alkaline medium was 0.92 V (vs.RHE), the half-wave potential was 0.82 V (vs.vs.RHE), both close to commercial 20wt% platinum carbon catalysts. In addition, the nitrogen-doped regenerated carbon possesses better cycling stability and methanol tolerance than commercial platinum carbon and is expected to be a new oxygen reduction catalyst. It also provides a new direction for the high-value utilization of antibiotic decolorization waste activated carbon.
1 Gouse P S, Kwon H J, Lee T G, et al. Ionics, 2020, 26(4), 1563. 2 Du M, Ma Z Y, Ji C J, et al. Inorgganic Chemicals Industry, 2021, 53(06), 72. (in Chinese). 杜淼, 马志远, 姬长建, 等. 无机盐工业, 2021, 53(06), 72. 3 Ouyang C, Wang X. Inorganic Chemistry Frontiers, 2020, 7(1), 28. 4 Yuan W, Xie A, Chen P, et al. Energy, 2018, 152, 333. 5 Liu J, Wei L, Wang H, et al. Electrochimica Acta, 2020, 364, 137335. 6 Panomsuwan G, Hussakan C, Kaewtrakulchai N, et al. RSC Advances, 2022, 12(27), 17481. 7 Duraisamy V, Senyhil K S M. International Journal of Hydrogen Energy, 2022, 47(41), 17992. 8 Wang G, Peng H, Qiao X, et al. International Journal of Hydrogen Energy, 2016, 41(32), 14101. 9 Li D, Chen W H, Wu J P, et al. Journal of Materials Chemistry A, 2020, 47, 24977. 10 Yang Z, Han J, Jiao R, et al. Journal of Colloid and Interface Science, 2019, 557, 664. 11 Wei J W, Li P, Qiang F Q, et al. Jorunal of Functional Materials, 2021, 52(02), 2098(in Chinese). 魏家崴, 李平, 强富强, 等. 功能材料, 2021, 52(02), 2098. 12 Gao S, Geng K, Liu H, et al. Energy & Environmental Science, 2015, 8(1), 221. 13 Chen X, Li Z, Qin R, et al. Catalysis Communications, 2020, 146, 106131. 14 Wang J B, Jiang J C, Sun k, New Chemical Materials, 2014, 42(05), 4(in Chinese). 王金表, 蒋剑春, 孙康, 等. 化工新型材料, 2014, 42(05), 4. 15 Liu X, Qin N, Li M R, et al. The Food Industry, 2021, 42(03), 10(in Chinese). 刘星, 秦楠, 李铭柔, 等. 食品工业, 2021, 42(03), 10. 16 Guo B B, Liu Z S, Wang X, et al. Petrochemical Safety and Environmental Protection Technology, 2015, 31(04), 1(in Chinese). 郭兵兵, 刘忠生, 王新, 等. 石油化工安全环保技术, 2015, 31(04), 1. 17 Zhang N, Gao S X, Chen L, et al. Applied Chemical Industry, 2021, 50(01), 200(in Chinese). 张楠, 高山雪, 陈蕾. 应用化工, 2021, 50(01), 200. 18 Wu J C, Liu T Q. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(04), 1(in Chinese). 吴锦程, 刘太奇. 北京石油化工学院学报, 2021, 29(04), 1. 19 Li W J, Huang B F, Yang Z Y, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(04), 1318(in Chinese). 李婉君, 黄帮福, 杨征宇, 等. 硅酸盐通报, 2022, 41(04), 1318. 20 Hou L J. Zhejiang Chemical Industry, 2020, 51(05), 37(in Chinese). 侯丽君. 浙江化工, 2020, 51(05), 37. 21 Shi F F, Qiu L M, Yu C, et al. Journal of Refrigeration, 2014, 35(05), 14(in Chinese). 石芳芳, 邱利民, 于川, 等. 制冷学报, 2014, 35(05), 14. 22 Wu X X, Wang X M, Dang A M, et al. Applied Chemical Industry, 2018, 47(01), 181(in Chinese). 吴潇潇, 王星敏, 唐爱民, 等. 应用化工, 2018, 47(01), 181. 23 Ma Y, Zhang X, Wen J. IOP Conference Series: Earth and Environmental Science, 2021, 769(2), 022047. 24 Han T W, Wang Z, Zhu G G, et al. Technology and Development of Chemical Industry, 2016, 45(10), 44(in Chinese). 韩庭苇, 王郑, 朱垠光, 等. 化工技术与开发, 2016, 45(10), 44. 25 Mu Z. Journal of Green Science and Technology, 2014 (07), 207(in Chinese). 牟真. 绿色科技, 2014 (07), 207. 26 Li C, Zheng Q, Xiang Q, et al. Journal of Chemical Education, 2021, 98(9), 3026. 27 Jiang H L, Wang Z W, Su Q. Journal of Green Science and Technology, 2020, 11(22), 136 28 Zhong G, Xu M, Xu S, et al. International Journal of Energy Research, 2021, 45(7), 10393. 29 Zhao Y, Li D N, Yang J Z, et al. Materials Reports, 2023, 37(2), 21070205(in Chinese). 赵悦, 李德念, 阳济章, 等. 材料导报, 2023, 37(2), 21070205. 30 Zhang G, Lei B, Chen S, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105387. 31 Woo J, Lim J S, Kim J H, et al. Chemical Communications, 2021, 57(60), 7350. 32 Ning X, Li Y, Ming J, et al. Chemical Science, 2019, 10(6), 1589. 33 Bhuvanendran N, Ravichandran S, Xu Q, et al. International Journal of Hydrogen Energy, 2022, 47(11), 7113. 34 Shehnaz, Wu D, Guo Y, et al. Electrochimica Acta, 2018, 266, 151. 35 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717. 36 Yasmin S, Cho S, Jeon S. Applied Surface Science, 2018, 434, 905.