Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 22080168-7    https://doi.org/10.11896/cldb.22080168
  城市固废材料高效处理及资源化利用 |
氮掺杂再生活性炭的制备及电催化氧还原反应性能研究
叶嘉鸿1,2,3,4, 李德念2,3,4, 阳济章2,3,4, 赵悦2,3,4, 袁浩然2,3,4,*, 陈勇1,2,3,4
1 华南农业大学生物质工程研究院,广州 510642
2 中国科学院广州能源研究所,广州 510640
3 南方海洋科学与工程广东省实验室(广州),广州 511458
4 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
Preparation and Electrocatalytic Oxygen Reduction Performance of Nitrogen Doped Regenerated Activated Carbon
YE Jiahong1,2,3,4, LI Denian2,3,4, YANG Jizhang2,3,4, ZHAO Yue2,3,4, YUAN Haoran2,3,4,*, CHEN Yong1,2,3,4
1 School of Biomass Engineering Research, South China Agricultral University, Guangzhou 510642, China
2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
4 Guangdong Provincial Key Laboratory of New Energy and Renewable Energy Research, Development and Application, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 22564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决危废活性炭传统回收方式带来的资源浪费和环境污染等问题,本工作以抗生素脱色废活性炭为原料、氨气为氮源,采用高温热解再生法将氮元素通过sp2杂化键合进入到活性炭骨架中,制备了氮掺杂再生废活性炭氧还原反应(ORR)催化剂,分析了氮掺杂再生活性炭的物相组成、微观形貌、电化学性能。结果表明,当温度为1 000 ℃、退火时间为1 h时,所制备的N-RWAC-1000-1氧还原电催化性能最佳。N-RWAC-1000-1具有丰富的微孔和介孔结构,比表面积可达908 m2/g,在碱性介质中的起始电位为0.92 V(vs.RHE),半波电位为0.82 V(vs.RHE),均接近商业20%(质量分数)的铂碳催化剂。此外,氮掺杂再生炭拥有优于商业化铂碳的循环稳定性和甲醇耐受性,有望成为新的氧还原催化剂以期为抗生素脱色废活性炭的高值化利用提供了新的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶嘉鸿
李德念
阳济章
赵悦
袁浩然
陈勇
关键词:  废活性炭  高温热再生  氮掺杂碳  氧还原反应    
Abstract: In order to solve the problems of resource waste and environmental pollution caused by the traditional recycling of hazardous waste activated carbon, this work prepared a nitrogen-doped regenerated waste activated carbon oxygen reduction reaction (ORR) catalyst by using anti-biotic decolorization waste activated carbon as raw material and ammonia gas as nitrogen source, and the nitrogen element was bonded into the activated carbon skeleton through sp2 hybridization by high temperature pyrolysis regeneration. The physical composition, microscopic morphology and electrochemical properties of the nitrogen-doped regenerated activated carbon were analyzed. The results showed that the best perfor-mance of the prepared N-RWAC-1000-1 oxygen reduction electrocatalyst was achieved when the temperature was 1 000 ℃ and the annealing time was 1 h. The N-RWAC-1000-1 had abundant microporous and mesoporous structures with a specific surface area up to 908 m2/g. The starting potential in alkaline medium was 0.92 V (vs.RHE), the half-wave potential was 0.82 V (vs.vs.RHE), both close to commercial 20wt% platinum carbon catalysts. In addition, the nitrogen-doped regenerated carbon possesses better cycling stability and methanol tolerance than commercial platinum carbon and is expected to be a new oxygen reduction catalyst. It also provides a new direction for the high-value utilization of antibiotic decolorization waste activated carbon.
Key words:  waste activated carbon    high temperature thermal regeneration    nitrogen doped carbon    oxygen reduction reaction
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TM911.4  
  O643.36  
基金资助: 国家重点研发计划(2019YFC1906605);广州市科技计划项目(202201010687);广东省基础与应用基础研究基金(2022A1515011653)
通讯作者:  袁浩然,研究员。2003年毕业于合肥工业大学热能工程专业,获学士学位;2010年毕业于中国科学院广州能源研究所,获博士学位;2011年访问日本名古屋大学生物化学工程系,现任中国科学院广州能源研究所城乡矿山集成技术研究室副主任。致力于有机固废能源化与资源化高效清洁利用基础理论研究及技术开发。发表SCI/EI论文120余篇(第一或通信作者)。yuanhr@ms.giec.ac.cn   
作者简介:  叶嘉鸿,2021年6月在华南农业大学获得工学学士学位,现为华南农业大学材料与能源学院硕士研究生,于2021年9月在中科院广州能源研究所联合培养学习,主要从事固体废弃物高值化利用研究。
引用本文:    
叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
YE Jiahong, LI Denian, YANG Jizhang, ZHAO Yue, YUAN Haoran, CHEN Yong. Preparation and Electrocatalytic Oxygen Reduction Performance of Nitrogen Doped Regenerated Activated Carbon. Materials Reports, 2023, 37(10): 22080168-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080168  或          http://www.mater-rep.com/CN/Y2023/V37/I10/22080168
1 Gouse P S, Kwon H J, Lee T G, et al. Ionics, 2020, 26(4), 1563.
2 Du M, Ma Z Y, Ji C J, et al. Inorgganic Chemicals Industry, 2021, 53(06), 72. (in Chinese).
杜淼, 马志远, 姬长建, 等. 无机盐工业, 2021, 53(06), 72.
3 Ouyang C, Wang X. Inorganic Chemistry Frontiers, 2020, 7(1), 28.
4 Yuan W, Xie A, Chen P, et al. Energy, 2018, 152, 333.
5 Liu J, Wei L, Wang H, et al. Electrochimica Acta, 2020, 364, 137335.
6 Panomsuwan G, Hussakan C, Kaewtrakulchai N, et al. RSC Advances, 2022, 12(27), 17481.
7 Duraisamy V, Senyhil K S M. International Journal of Hydrogen Energy, 2022, 47(41), 17992.
8 Wang G, Peng H, Qiao X, et al. International Journal of Hydrogen Energy, 2016, 41(32), 14101.
9 Li D, Chen W H, Wu J P, et al. Journal of Materials Chemistry A, 2020, 47, 24977.
10 Yang Z, Han J, Jiao R, et al. Journal of Colloid and Interface Science, 2019, 557, 664.
11 Wei J W, Li P, Qiang F Q, et al. Jorunal of Functional Materials, 2021, 52(02), 2098(in Chinese).
魏家崴, 李平, 强富强, 等. 功能材料, 2021, 52(02), 2098.
12 Gao S, Geng K, Liu H, et al. Energy & Environmental Science, 2015, 8(1), 221.
13 Chen X, Li Z, Qin R, et al. Catalysis Communications, 2020, 146, 106131.
14 Wang J B, Jiang J C, Sun k, New Chemical Materials, 2014, 42(05), 4(in Chinese).
王金表, 蒋剑春, 孙康, 等. 化工新型材料, 2014, 42(05), 4.
15 Liu X, Qin N, Li M R, et al. The Food Industry, 2021, 42(03), 10(in Chinese).
刘星, 秦楠, 李铭柔, 等. 食品工业, 2021, 42(03), 10.
16 Guo B B, Liu Z S, Wang X, et al. Petrochemical Safety and Environmental Protection Technology, 2015, 31(04), 1(in Chinese).
郭兵兵, 刘忠生, 王新, 等. 石油化工安全环保技术, 2015, 31(04), 1.
17 Zhang N, Gao S X, Chen L, et al. Applied Chemical Industry, 2021, 50(01), 200(in Chinese).
张楠, 高山雪, 陈蕾. 应用化工, 2021, 50(01), 200.
18 Wu J C, Liu T Q. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(04), 1(in Chinese).
吴锦程, 刘太奇. 北京石油化工学院学报, 2021, 29(04), 1.
19 Li W J, Huang B F, Yang Z Y, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(04), 1318(in Chinese).
李婉君, 黄帮福, 杨征宇, 等. 硅酸盐通报, 2022, 41(04), 1318.
20 Hou L J. Zhejiang Chemical Industry, 2020, 51(05), 37(in Chinese).
侯丽君. 浙江化工, 2020, 51(05), 37.
21 Shi F F, Qiu L M, Yu C, et al. Journal of Refrigeration, 2014, 35(05), 14(in Chinese).
石芳芳, 邱利民, 于川, 等. 制冷学报, 2014, 35(05), 14.
22 Wu X X, Wang X M, Dang A M, et al. Applied Chemical Industry, 2018, 47(01), 181(in Chinese).
吴潇潇, 王星敏, 唐爱民, 等. 应用化工, 2018, 47(01), 181.
23 Ma Y, Zhang X, Wen J. IOP Conference Series: Earth and Environmental Science, 2021, 769(2), 022047.
24 Han T W, Wang Z, Zhu G G, et al. Technology and Development of Chemical Industry, 2016, 45(10), 44(in Chinese).
韩庭苇, 王郑, 朱垠光, 等. 化工技术与开发, 2016, 45(10), 44.
25 Mu Z. Journal of Green Science and Technology, 2014 (07), 207(in Chinese).
牟真. 绿色科技, 2014 (07), 207.
26 Li C, Zheng Q, Xiang Q, et al. Journal of Chemical Education, 2021, 98(9), 3026.
27 Jiang H L, Wang Z W, Su Q. Journal of Green Science and Technology, 2020, 11(22), 136
28 Zhong G, Xu M, Xu S, et al. International Journal of Energy Research, 2021, 45(7), 10393.
29 Zhao Y, Li D N, Yang J Z, et al. Materials Reports, 2023, 37(2), 21070205(in Chinese).
赵悦, 李德念, 阳济章, 等. 材料导报, 2023, 37(2), 21070205.
30 Zhang G, Lei B, Chen S, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105387.
31 Woo J, Lim J S, Kim J H, et al. Chemical Communications, 2021, 57(60), 7350.
32 Ning X, Li Y, Ming J, et al. Chemical Science, 2019, 10(6), 1589.
33 Bhuvanendran N, Ravichandran S, Xu Q, et al. International Journal of Hydrogen Energy, 2022, 47(11), 7113.
34 Shehnaz, Wu D, Guo Y, et al. Electrochimica Acta, 2018, 266, 151.
35 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717.
36 Yasmin S, Cho S, Jeon S. Applied Surface Science, 2018, 434, 905.
[1] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[2] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[3] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[4] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[5] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[6] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[7] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[8] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[9] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[10] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[11] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[12] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[13] 汪广进, 程凡, 徐甜, 余意, 文胜, 龚春丽, 刘海, 汪杰, 郑根稳, 潘牧. 二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 33-36.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed