Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9140-9149    https://doi.org/10.11896/cldb.20030121
  无机非金属及其复合材料 |
用于电催化氧还原制备双氧水的催化剂的研究进展
雷静1, 陈子茜1, 李怡招1,2,*, 曹亚丽1,*
1 新疆大学化学学院,应用化学研究所,能源材料化学教育部重点实验室,先进功能材料自治区重点实验室,乌鲁木齐 830046
2 新疆大学化工学院,乌鲁木齐 830046
Advances in Catalyst Materials for the Hydrogen Peroxide Production by Electrocatalytic Oxygen Reduction
LEI Jing1, CHEN Zixi1, LI Yizhao1,2,*, CAO Yali1,*
1 Key Laboratory of Energy Materials Chemistry of Ministry of Education, Key Laboratory of Advanced Functional Materials(Autonomous Region), Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, China
2 College of Chemical Engineering, Xinjiang University, Urumqi 830046, China
下载:  全 文 ( PDF ) ( 7883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 H2O2及其水溶液双氧水具有强氧化性,被广泛应用于造纸、污水处理和消毒等方面。全球对H2O2的需求量与日俱增,但传统的蒽醌法工艺复杂、成本高、效率低,氢氧直接合成法又存在很大的安全隐患。因此,电催化氧还原这种新型、绿色且安全的原位合成H2O2方法近年来受到广泛关注。
氧还原反应(ORR)是多电子反应,中间体复杂且难以测量,机理研究困难。ORR存在两种竞争的反应路径,两电子路径得到H2O2,而四电子路径生成H2O。两电子氧还原反应(2e-ORR)的反应效率取决于催化剂的活性、选择性和稳定性。目前贵金属基催化剂(如Au、Pd)对2e-ORR显示出较好的催化性能,但昂贵、稀缺的特性限制了它们的广泛应用。
当前关于电催化氧还原制备H2O2所用催化剂的研究主要集中于三方面:(1)减少贵金属的负载。将惰性金属与活性金属相结合,得到了许多性能优异的合金材料,如Pt-Hg等。(2)发展非贵金属催化剂。碳基催化剂的缺陷、表面氧官能团(C=O、C-O等)、杂原子掺杂(N-、S-等)和过渡金属掺杂(Co、Fe等)都能够提高H2O2的选择性与催化活性。(3)发展非贵金属复合催化剂。非贵金属复合物催化剂(如MnO2/C、CoS2/C)可促进电子转移,提高H2O2的选择性。
本文系统介绍了2e-ORR的机理及测试方法,简要总结了近年来用于2e-ORR制H2O2的贵金属基催化剂、碳基催化剂和非贵金属复合催化剂的研究进展,并在此基础上对电催化氧还原制双氧水未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷静
陈子茜
李怡招
曹亚丽
关键词:  电催化  氧还原反应  过氧化氢  两电子路径    
Abstract: H2O2 shows strong oxidizing properties and is widely used in papermaking, sewage treatment, and disinfection. The global demand for H2O2 is increasing, but the anthraquinone method for production of H2O2 is complicated, high cost, and low efficient. The direct hydrogen-oxygen synthesis is great safety risks. Therefore, electrocatalytic oxygen reduction reaction, as an emerging, green and safe in-situ synthesis of H2O2, has attracted widespread attention in recent years.
Oxygen reduction reaction (ORR) is a multi-electron reaction, the intermediates are complex and difficult to measure, which makes it hard to study the mechanism. There are two competing reaction paths in ORR, two electron paths get H2O2, and four electron paths generate H2O. The efficiency of two-electron oxygen reduction reaction (2e- ORR) depends on the activity, selectivity, and stability of catalyst.
At present, the noble metal catalysts, such as Au and Pd, show good performance in 2e- ORR to produce H2O2, but they are expensive and rare. Therefore, three strategies have been proposed. (Ⅰ) Decreasing the loading of noble metal. Integrating the inert metals with the active me-tals to obtain many high-performance alloy materials, such as Pt-Hg. (Ⅱ) Developing noble metal-free catalysts. The defects, surface oxygenic functional groups (C=O, C-O), heteroatom doping (N-, S-) and transition metal doping (Co, Fe) in carbon-based catalysts can all improve the selectivity and catalytic activity towards H2O2. (Ⅲ) Developing non-noble metal composite catalysts. Non-noble metal composite catalysts (such as MnO2/C, CoS2/C) can promote electron transfer and improve H2O2 selectivity.
Herein, the mechanism and test methods of 2e- ORR are systematically introduced. The catalysts included noble metal-based catalysts, carbon-based catalysts, and non-noble metal composite catalysts in 2e- ORR for generation of H2O2 in the recent years are summarized. The outlook of future research directions of electrochemical generation of hydrogen peroxide is also suggested.
Key words:  electrocatalysis    oxygen reduction reaction    hydrogen peroxide    two-electron route
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  O646  
基金资助: 国家自然科学基金(21766036);新疆维吾尔自治区自然科学基金(2017D01C076)
通讯作者:  liyizhao0809@126.com;caoyali523@163.com   
作者简介:  雷静,2019年6月毕业于新疆大学,获得理学学士学位。现为新疆大学化学学院硕士研究生,在曹亚丽教授和李怡招副教授的指导下进行研究。目前主要研究领域为电催化氧还原。
李怡招,新疆大学化工学院副教授,硕士研究生导师,中国青少年科技创新奖获得者,入选新疆维吾尔自治区“天池博士”人才计划。目前承担国家自然科学基金、新疆维吾尔自治区自然科学基金等多项课题,在J. Mater. Chem. A、Sensor. Actuat. B、J. Colloid Interf. Sci.、Ind. Eng. Chem. Res.、ChemCatChem等期刊发表论文30余篇。主要从事功能纳米材料制备与催化应用研究。曹亚丽,博士,教授,博士研究生导师,2009年取得西安交通大学材料科学与工程专业博士学位,主要从事无机功能材料的化学合成、性能及应用研究。2014年入选“新疆杰出青年”,2015年入选“国家基金委-新疆联合基金”本地优青,主持包括4项国家自然科学基金在内的省部级科研项目10余项,先后在Appl. Catal. B、 J. Mater. Chem. A、 Green Chem.、 J. Power Sources、 Carbon、 ACS Appl. Mater. Interf.、 Chem. Eng. J.、 J. Colloid Interf. Sci.、 Electrochimica Acta、 Inorg. Chem.、 Sensors Actuat.B-Chem.等重要学术期刊上发表SCI论文百余篇,SCI他引近两千余次,授权中国发明专利16件。曾获2007年、2013年新疆维吾尔自治区科技进步一等奖,2006年、2010年、2014年、2016年、2018年自治区自然科学优秀论文奖,2012年新疆大学自然科学优秀成果奖特等奖,2016年新疆大学自然科学奖特等奖,2019年第九届新疆青年科技奖。
引用本文:    
雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
LEI Jing, CHEN Zixi, LI Yizhao, CAO Yali. Advances in Catalyst Materials for the Hydrogen Peroxide Production by Electrocatalytic Oxygen Reduction. Materials Reports, 2021, 35(9): 9140-9149.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030121  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9140
1 Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Nature Materials,2013,12(12),1137.
2 Yang S, Verdaguer-Casadevall A, Arnarson L, et al. ACS Catalysis,2018,8(5),4064.
3 Chen K, Yuan S D. Chemistry & Bioengineering,2006(7),1(in Chinese).
陈坤,袁颂东.化学与生物工程,2006(7),1.
4 Hasché F, Oezaslan M, Strasser P, et al. Journal of Energy Chemistry,2016,25(2),251.
5 Zhao Y Y, Wang D J,Zhao C C. Materials Reports,2019,33(7),50.
6 Hancu D, Green J, Beckman E J. Industrial & Engineering Chemistry Research,2002,41(18),4466.
7 Chen K,Yuan S D. Chemistry & Bioengineering,2006,23(7),1.
8 Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Angewandte Chemie International Edition,2006,45(42),6962.
9 Jiang Y, Ni P, Chen C, et al. Advanced Energy Materials,2018,8(31),1801909.
10 Li S S. Design, synthesis and electrocatalytic properties of cobalt based electrocatalysts. Ph.D. Thesis, Taiyuan University of Technology,2019(in Chinese).
李莎莎.钴基电催化剂的结构设计、合成及其电催化性能.博士学位论文,太原理工大学,2019.
11 Rankin R B, Greeley J. ACS Catalysis,2012,2(12),2664.
12 Sun Y, Sinev I, Ju W, et al. ACS Catalysis,2018,8(4),2844.
13 Paulus U A, Schmidt T J, Gasteiger H A, et al. Journal of Electroanaly-tical Chemistry,2001,495(2),134.
14 Aveiro L R, da Silva A G M, Antonin V S, et al. Electrochimica Acta,2018,268,101.
15 Hasanzadeh A, Khataee A, Zarei M, et al. Scientific Reports,2019,9(1),1.
16 Li G, Zhang Y. New Journal of Chemistry,2019,43(32),12657.
17 Peng L Z, Liu P, Cheng Q Q, et al. Chemical communications,2018,54(35),4433.
18 Perry S C, Pangotra D, Vieira L, et al. Nature Reviews Chemistry,2019,3(7),442.
19 Lu Y, Jiang Y, Gao X, et al. Chemical Communications,2014,50(62),8464.
20 Fortunato G V, Pizzutilo E, Mingers A M, et al. The Journal of Physical Chemistry C,2018,122(28),15878.
21 Melchionna M, Fornasiero P. Chem,2019,5(8),1927.
22 Pizzutilo E, Freakley S J, Cherevko S, et al. ACS catalysis,2017,7(9),5699.
23 Pizzutilo E, Kasian O, Choi C H, et al. Chemical Physics Letters,2017,683,436.
24 Antonin V S, Parreira L S, Aveiro L R, et al. Electrochimica Acta,2017,231,713.
25 Jirkovský J S, Panas I, Ahlberg E, et al. Journal of the American Chemical Society,2011,133(48),19432.
26 Pérez J F, Sáez C, Llanos J, et al. Industrial & Engineering Chemistry Research,2017,56(44),12588.
27 Pan Y, Wu C R, Chen S W, et al. Materials Reports,2019,33(S1),41.
潘云,吴承仁,陈绍维,等.材料导报,2019,33(S1),41.
28 Chen G, Liu J, Li Q, et al. Nano Research,2019,12(10),2614.
29 Chen S, Chen Z, Siahrostami S, et al. ACS Sustainable Chemistry & Engineering,2018,6(1),311.
30 olić V, Yang S, Révay Z, et al. Electrochimica Acta,2018,272,192.
31 Tan X, Tahini H A, Smith S C. Materials Horizons,2019,6(7),1409.
32 Zhu J, Xiao X, Zheng K, et al. Carbon,2019,153,6.
33 Wang Y L, Li S S, Yang X H, et al. Journal of Materials Chemistry A,2019,7(37),21329.
34 Zhang H, Li Y, Zhao Y, et al. ACS Applied Materials & Interfaces,2019,11(31),27846.
35 Chen Z X. Solvent-free preparation and electrocatalytic performance of phenolic resin-based porous carbon composites. Master's Thesis, Xinjiang University,2020(in Chinese)
陈子茜.酚醛树脂基多孔碳复合材料的固相合成与电催化性能研究.硕士学位论文,新疆大学,2020.
36 Roldán L, Truong-Phuoc L, Ansón-Casaos A, et al. Catalysis Today,2018,301,2.
37 Lee Y H, Li F, Chang K H, et al. Applied Catalysis B: Environmental,2012,126,208.
38 Fellinger T P, Hasché F, Strasser P, et al. Journal of the American Chemical Society,2012,134(9),4072.
39 Wan K, Long G F, Liu M Y, et al. Applied Catalysis B Environmental,2015,165,566.
40 Iglesias D, Giuliani A, Melchionna M, et al. Chemistry,2018,4,106.
41 Humphrey N, Rodriguez R, Arias G, et al. Journal of Catalysis,2020,381,295.
42 Sun Y, Silvioli L, Sahraie N R, et al. Journal of the American Chemical Society,2019,141(31),12372.
43 Chen Z, Li Y, Liu B, et al. ChemCatChem,2020,DOI:10.1002/cctc.201902376.
44 Cheng Q, Han S, Mao K, et al. Nano Energy,2018,52,485.
45 Zhao S, Yang J, Han M, et al. Applied Catalysis B: Environmental,2020,260,118207.
46 Li B Q, Zhao C X, Liu J N, et al. Advanced Materials,2019,31(35),1808173.
47 Jiang K, Back S, Akey A J, et al. Nature Communications,2019,10(1),1.
48 Das R K, Golder A K. Journal of Electroanalytical Chemistry,2018,823,9.
49 Sheng H, Hermes E D, Yang X, et al. ACS Catalysis,2019,9(9),8433.
50 Alcaide F, álvarez G, Guelfi D R V, et al. Chemical Engineering Journal,2020,379,122417.
51 San Roman D, Krishnamurthy D, Garg R, et al. ACS Catalysis,2020,10(3),1993.
[1] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[2] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[3] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[4] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[5] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[6] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[7] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[8] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[9] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[10] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[11] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[12] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[13] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[14] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[15] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed