Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16011-16015    https://doi.org/10.11896/cldb.19060125
  无机非金属及其复合材料 |
Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能
郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智
长安大学材料科学与工程学院,交通铺面材料教育部工程研究中心,西安 710064
Preparation and Hydrogen Evolution Performance of Ni(SxSe1-x)2 Array Catalytic Electrode
GUO Yajie, LI Fan, GUO Dong, ZHANG Chunrui, LU Shangzhi
Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 4379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 黄铁矿型过渡金属硫属化合物(MX2,典型的M=Fe、Co或Ni,X=S或Se)因具有独特的电子结构、低廉的价格、优异的催化活性和稳定性等特点,在电催化剂领域拥有广阔的发展前景。然而其电催化性能与传统Pt系贵金属催化剂相比尚有差距,因此本研究尝试通过掺杂调控催化剂成分的方式进一步改善其催化性能。以S和Se共掺杂Ni基硫属化合物为研究对象,选择碳纤维纸作为导电基底,采用水热法在碳纤维表面生长出Ni2-(CO3)(OH)2纳米线阵列作为前驱体,并以S/Se混合粉作为反应源,利用化学气相沉积法实现S/Se与Ni2(CO3)(OH)2的反应,合成了成分可控的阴离子共掺Ni(SxSe1-x)2纳米线阵列自支撑一体化催化电极。电催化性能测试表明:在不同成分的Ni(SxSe1-x)2中,Ni(S0.81Se0.19)2纳米线表现出最佳的催化性能,仅需要93 mV和135 mV的过电位就可以分别驱动10 mA·cm-2和100 mA·cm-2的电流密度,对应的Tafel斜率也低至42.07 mV·dec-1。研究表明,阴离子掺杂能够进一步提高该类催化剂的催化活性,为高效率、低成本碱金属化合物电催化剂的设计和制备提供借鉴思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭亚杰
李帆
郭栋
张春瑞
卢尚智
关键词:  二硒化镍  阴离子掺杂  电催化剂  析氢反应  催化活性    
Abstract: Pyrite transition metal sulfur compounds (MX2, typical M=Fe, Co or Ni, X=S or Se) have broad development prospects in the field of electrocatalysts due to their unique electronic structure, low price, high catalytic activity and good stability. However, there is still a gap between its electrocatalytic performance and that of traditional Pt noble metal catalysts. Therefore, this paper attempts to further improve its catalytic performance by doping and regulating the composition of the catalyst. The precursors Ni2(CO3)(OH)2 nanowire arrays were synthesized on carbon fiber surface by hydrothermal method. The self-supporting integrated catalytic electrode with anion co-doped Ni(SxSe1-x)2 nanowire arrays on carbon fiber paper were synthesized by chemical vapor deposition using S/Se mixed powders as reaction source, where the composition of the catalyst was controllable. The electrocatalytic performance test showed that Ni(S0.81Se0.19)2 nanowire exhibited the best catalytic performance among the Ni(SxSe1-x)2 catalysts with different components. The current densities of 10 mA·cm-2 and 100 mA·cm-2 could be achieved by only 93 mV and 135 mV overpotential, respectively, and the Tafel slope was as low as 42.07 mV·dec-1. These results show that anion doping can further improve the catalytic activity of these catalysts, and provide ideas for the design and preparation of alkali metal compound electrocatalysts with high efficiency and low cost.
Key words:  nickel diselenide    anion doping    electrocatalyst    hydrogen evolution reaction    catalytic activity
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  O643.36  
  TQ116.2  
基金资助: 陕西省重点研发计划项目(2017GY-033);陕西省博士后特等资助项目(2017BSHTDZZ01)
通讯作者:  yjguo@chd.edu.cn   
作者简介:  郭亚杰,长安大学教授,硕士研究生导师,2011年毕业于西安交通大学(工学博士),随后进入长安大学材料科学与工程学院材料成型及控制工程系任职,2015年起任成型系副主任。2017年受CSC全额资助前往澳大利亚新南威尔士大学(UNSW)进行访学。长期从事异种材料连接技术及界面、金属基复合材料和功能金属材料等方面的研究工作,近5年内主持课题包括国家自然科学基金、中国博士后基金、陕西省重点研发计划、陕西省博士后基金、陕西省自然科学基金等课题10余项。以第一作者发表SCI论文10余篇,授权国家发明专利4项。
引用本文:    
郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
GUO Yajie, LI Fan, GUO Dong, ZHANG Chunrui, LU Shangzhi. Preparation and Hydrogen Evolution Performance of Ni(SxSe1-x)2 Array Catalytic Electrode. Materials Reports, 2020, 34(16): 16011-16015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060125  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16011
1 Guo Y J, Guo D, Ye F, et al. International Journal of Hydrogen Energy, 2017, 42(27), 17038.
2 Liu T, Asiri A M, Sun X. Nanoscale, 2016, 8(7), 3911.
3 Guo Y, Guo D, Ye F, et al. ACS Sustainable Chemistry & Engineering,2018,6(9),11884.
4 Kong D, Cha J J, Wang H, et al.Energy & Environmental Science, 2013, 6(12), 3553.
5 Zhou H, Yu F, Sun J, et al. Nano Letters, 2016,16(12),7604.
6 Gong Q, Cheng L, Liu C, et al. ACS Catalysis, 2015, 5(4), 2213.
7 Xu K, Wang F, Wang Z, et al. ACS Nano, 2014, 8(8), 8468.
8 Fang J F,Deng J P,Chen, Z T.Journal of Chongqing Institute of Techno-logy,2020,34(3),122(in Chinese).
方俊飞,邓建平,陈正涛.重庆理工大学学报(自然科学),2020,34(3),122.
9 Wang K, Xi D, Zhou C, et al. Journal of Materials Chemistry A, 2015, 3(18),9415.
10 Wang K, Zhou C, Xi D, et al. Nano Energy, 2015, 18,1.
11 Chen W F, Wang C H, Sasaki K, et al. Energy & Environmental Science, 2013, 6(3), 943.
12 Kibsgaard J, Tsai C, Chan K, et al. Energy & Environmental Science, 2015, 8(10), 3022.
[1] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[2] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[3] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[4] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[5] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[6] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[7] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[8] 汪广进, 程凡, 徐甜, 余意, 文胜, 龚春丽, 刘海, 汪杰, 郑根稳, 潘牧. 二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 33-36.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed