Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4084-4088    https://doi.org/10.11896/j.issn.1005-023X.2018.23.009
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
纳米混杂结构NiSe2高效析氢电极制备及其电化学性能
郭亚杰, 叶锋, 郭栋, 李帆, 李志浩
长安大学材料科学与工程学院, 西安 710064
Preparation and Electrochemical Performance of NiSe2 Nano Hybrid Structure Electrode for Highly Efficient Hydrogen Evolution
GUO Yajie, YE Feng, GUO Dong, LI Fan, LI Zhihao
School of Materials Science and Engineering, Chang'an University, Xi'an 710064
下载:  全 文 ( PDF ) ( 1789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热和化学气相沉积两步法,在碳纤维纸(CFP)上直接合成纳米线/纳米颗粒混杂结构NiSe2催化剂,制备出自支撑一体化电解水析氢电极。利用SEM、XRD和XPS,对复合电极的形貌、成分及物相组成进行了表征,并考察了该电极在0.5 mol·L-1 H2SO4溶液中的电催化析氢性能。结果表明:在硒化反应过程中,碱式碳酸镍前驱体纳米线相互连接并最终形成纳米线与纳米颗粒相混合的混杂结构NiSe2催化剂,均匀生长于碳纤维表面; NiSe2纳米混杂结构电极驱动100 mA·cm-2的电流密度时所需的过电位为232 mV,相比NiSe2纳米颗粒结构电极(256 mV)具有更低的过电位。此外,其更低的塔菲尔斜率(38.3 mV·dec-1)、更小的电荷转移阻抗(3.2 Ω)、更大的双电层电容(11.81 mF·cm-2)以及近似两倍于NiSe2纳米颗粒电极的转换频率值(0.284 H2·s-1),都表明这种混杂结构电极具有优良的析氢性能。同时,经过3 000次循环伏安测试和20 h持续电解测试,该电极呈现出优异的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭亚杰
叶锋
郭栋
李帆
李志浩
关键词:  二硒化镍  混杂结构  电解水  析氢    
Abstract: A self-supported electrode with NiSe2 hybrid nanostructure grown on carbon fiber paper (CFP) was synthesized, for the first time, by using a two-step method combining hydrothermal process with chemical vapor deposition. The morphology, composition and phases were characterized by SEM, XRD and XPS. Moreover, the HER performance of the as-grown electrode in 0.5 mol·L-1 H2SO4 was determined. The results showed that the nanowires of the precursor, Ni2(CO3)(OH)2, linked during the selenization reaction. The product exhibited hybrid structure of NiSe2 nanowires and nanoparticles (H-NiSe2/CFP), which uniformly covered the CFP. The H-NiSe2/CFP only required a low overpotential of 232 mV to deliver the current density of 100 mA·cm-2, which is lower than that of the NiSe2 nanoparticles grown on CFP (NiSe2 NPs/CFP). Accordingly, the H-NiSe2/CFP displayed lower Tafel slope (38.3 mV·dec-1) and charge transfer resistance (3.2 Ω) when compared with the NiSe2 NPs/CFP. Also, the H-NiSe2/CFP showed larger double-layer capacitance (11.81 mF·cm-2) and TOF value (0.284 H2·s-1) than those of the NiSe2 NPs/CFP. These indicated the excellent HER performance of H-NiSe2/CFP. Moreover, this electrode exhibited remarkable stability during 3 000 times cycles CV sweeps and 20 h testing at the fixed overpotentials.
Key words:  NiSe2    hybrid structure    electrochemical water splitting    hydrogen evolution
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  O643.36  
  TQ116.2  
基金资助: 陕西省重点研发计划项目(2017GY-033); 陕西省博士后特等资助项目(2017BSHTDZZ01); 长安大学中央高校基本科研业务费专项资金资助项目(310831172001); 长安大学创新创业训练计划项目(201710710275)
作者简介:  郭亚杰:男,1980年生,博士,副教授,研究方向能源转换材料与技术 E-mail:yjguo@chd.edu.cn
引用本文:    
郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
GUO Yajie, YE Feng, GUO Dong, LI Fan, LI Zhihao. Preparation and Electrochemical Performance of NiSe2 Nano Hybrid Structure Electrode for Highly Efficient Hydrogen Evolution. Materials Reports, 2018, 32(23): 4084-4088.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.009  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4084
1 Tian T, Ai L, Jiang J.Metal-organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting[J].RSC Advances,2015,5(14):10290.
2 Zhang H, Yang B, Wu X, et al.Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction[J].ACS Applied Materials & Interfaces,2015,7(3):1772.
3 Faber MS, Lukowski MA, Ding Q, et al.Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J].The Journal of Physical Chemistry C,2014,118(37):21347.
4 Tang C, Xie L, Sun X, et al. Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film[J].Nanotechnology,2016,27(20):20LT02.
5 Nørskov J K, Bligaard T, Logadottir A, et al.Trends in the exchange current for hydrogen evolution[J].Journal of The Electrochemical Society,2005,152(3):e12154.
6 Jaramillo T F, Jorgensen K P, Bonde J, et al.Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J].Science,2007,317(5834):100.
7 Faber M S, Jin S.Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications[J].Energy & Environmental Science,2014,7(11):3519.
8 Tang C, Cheng N, Pu Z, et al.NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J].Angew and te Chemie International Edition,2015,54(32):9351.
9 Kong D, Wang H, Lu Z, et al.CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction[J].JACS,2014,136(13):4897.
10 Kong D, Cha J J, Wang H, et al.First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J].Energy & Environmental Science,2013,6(12):3553.
11 Kwak I H, Im H S, Jang D M, et al.CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting[J].ACS Applied Materials & Interfaces,2016,8(8):5327.
12 Song D, Wang H, Wang X, et al.NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction[J].Electrochimica Acta,2017,254(10):230.
13 Wang B, Wang X, Zheng B, et al.NiSe2 nanoparticles embedded in CNT networks: Scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction[J].Electrochemistry Communications,2017,83:51.
14 Zhang L, Wang T, Sun L, et al.Hydrothermal synthesis of 3D hiera-rchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction[J].Journal of Materials Chemistry A,2017,5(37):19752.
15 Liu T, Asiri A M, Sun X.Electrodeposited Co-doped NiSe2 nanoparticles film: A good electrocatalyst for efficient water splitting[J].Nanoscale,2016,8(7):3911.
16 Spataru N.A study of RuO2 as an electrocatalyst for hydrogen evolution in alkaline solution[J].Journal of Applied Electrochemistry,1996,26(4):397.
[1] 周琦,任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[2] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed