Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1417-1422    https://doi.org/10.11896/j.issn.1005-023X.2018.09.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能
褚 梅,李 曦,李 娜,侯美静,李小争,董永志,王 璐
武汉理工大学化学化工与生命科学学院,武汉 430070
Improved Electrocatalytic Hydrogen-evolution Performance of Metal-Organic Framework MOF(Ni)-74 by Using Graphene Oxide Decorations
CHU Mei, LI Xi, LI Na, HOU Meijing, LI Xiaozheng, DONG Yongzhi, WANG Lu
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 2549KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶剂热法制备了金属有机框架材料MOF(Ni)-74及其与氧化石墨烯(GO)的复合材料MOF(Ni)-GO,并利用线性伏安扫描(LSV)等电化学方法在N2饱和的0.5 mol/L H2SO4溶液中对材料的电催化性能进行了检测。实验结果表明, GO的掺杂能显著提升金属有机框架材料MOF(Ni)-74的电催化活性。其中GO含量为8%时,所得复合材料表现出最好的电催化析氢活性,起始电势仅为-0.462 V,塔菲尔斜率为110 mV/dec,同时该材料也表现出很好的电化学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚 梅
李 曦
李 娜
侯美静
李小争
董永志
王 璐
关键词:  金属有机框架(MOFs)  MOF(Ni)-74    氧化石墨烯  电催化  析氢反应    
Abstract: Using a solvothermal method, the metal-organic framework MOF(Ni)-74 and a series of its derivatives MOF(Ni)-GO(w%) differing in graphene oxide (GO) content (w%) were synthesized, and subsequently the linear sweep voltammetry (LSV) test was conducted in a N2-saturated 0.5 mol/L H2SO4 solution in order to determine the electrocatalytic performance of the products to hydrogen evolution reaction (HER). Our experiment confirmed the significantly improved electrocatalytic activity of the GO-decorated MOF(Ni)-74 catalysts, among which the MOF(Ni)-GO(8%) exhibited the best electrochemical catalytic performance towards HER with the lowest onset potential (-0.462 V), the smallest Tafel slope (110 mV/dec), as well as an excellent electrochemical stability.
Key words:  metal-organic frameworks (MOFs)    MOF(Ni)-74    niobium    graphene oxide    electrocatalysis    hydrogen evolution reaction
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O646  
基金资助: 国家自然科学基金(51273155);中央高校基本科研业务费专项资金(2016IB005;2017IB007)
通讯作者:  李曦:通信作者,女,1968年生,教授,主要从事电化学研究 E-mail:chemlixi@whut.edu.cn   
作者简介:  褚梅:女,1992年生,硕士研究生,从事电化学研究 E-mail:chumei943472820@whut.edu.cn
引用本文:    
褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
CHU Mei, LI Xi, LI Na, HOU Meijing, LI Xiaozheng, DONG Yongzhi, WANG Lu. Improved Electrocatalytic Hydrogen-evolution Performance of Metal-Organic Framework MOF(Ni)-74 by Using Graphene Oxide Decorations. Materials Reports, 2018, 32(9): 1417-1422.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.004  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1417
1 Li J, Li F, Guo S X, et al. PdCu@Pd nanocube with Pt-like activity for hydrogen evolution reaction[J].ACS Applied Materials & Interfaces,2017,9(9):8151.
2 Wang J, Zhu H, Yu D, et al. Engineering the composition and structure of bimetallic Au-Cu alloy nanoparticles in carbon nanofibers: Self-supported electrode materials for electrocatalytic water splitting[J]. ACS Applied Materials & Interfaces,2017,9(23):19756.
3 Gómez-Marín A M, Ticianelli E A. Effect of transition metals in the hydrogen evolution electrocatalytic activity of molybdenum carbide[J].Applied Catalysis B: Environmental,2017,209(15):600.
4 Liu Y, Howarth A J, Vermeulen N A, et al. Catalyticdegradation of chemical warfare agents and their simulants by metal-organic frameworks[J].Coordination Chemistry Reviews,2016,346(1):101.
5 Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures ofhofmann-type metal-organic frameworks[J].Coordination Chemistry Reviews,2017,346(1):123.
6 Zhai Rui, Jiao Fenglong, Lin Hongjun, et al. Progress in metal-organic framenorks[J]. Chinese Journal of Chromatography,2014,32(2):107(in Chinese).
翟睿,焦丰龙,林虹君,等.金属有机框架材料的研究进展[J].色谱,2014,32(2):107.
7 Gholampour N, Chaemchuen S, Hu Z Y, et al. Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique[J].Chemical Engineering Journal,2017,322(15):702.
8 Yang J, Ma Z, Gao W, et al. Layeredstructural Co-based MOF with conductive network frames as a new supercapacitor electrode[J].Chemistry-A European Journal,2017,23(3):631.
9 Raoof J B, Hosseini S R, Ojani R, et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J].Energy,2015,90(4):1075.
10 Nie Ming, Lu Shun, Li Qing, et al. Facile solvothermal synthesis of HKUST-1 as electrocatalyst for hydrogen evolution reaction[J]. Scientia Sinica(Chimica),2016,46(4):357(in Chinese).
聂明,陆顺,李庆,等.溶剂热法制备金属有机框架HKUST-1及其析氢性能[J].中国科学:化学,2016,46(4):357.
11 Jahan M, Liu Z, Loh K P. Agraphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J].Advanced Functional Materials,2013,23(43):5363.
12 Liu X, Liu W, Ko M, et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts[J].Advanced Functional Materials,2015,25(36):5799.
13 Chen S, Xue M, Li Y, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J].Journal of Materials Chemistry A,2015,3(40):20145.
14 Jabbari V, Veleta J M, Zarei-Chaleshtori M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J].Chemical Engineering Journal,2016,304(15):774.
15 Yang C, Wu S, Cheng J, et al. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J].Journal of Alloys and Compounds,2016,687(5):804.
16 Bonino F, Chavan S, Vitillo J G, et al. Localstructure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO[J].Chemistry of Materials,2008,20(15):4957.
17 Wang H, Liang Y, Liu L, et al. Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO[J].Applied Catalysis B: Environmental,2017,208(5):22.
18 Wang Q, Xia W, Guo W, et al. Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors[J].Chemistry An Asian Journal,2013,8(8):1879.
19 Cai J, Lu J Y, Chen Q Y, et al. Eu-based MOF/graphene oxide composite: A novel photocatalyst for the oxidation of benzyl alcohol using water as oxygen source[J].New Journal of Chemistry,2017,41(10):3882.
20 Chen Q, Li X, Min X, et al. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode[J].Journal of Electroanalytical Chemistry,2017,789(15):114.
21 Sun X, Xia Q, Zhao Z, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J].Chemical Engineering Journal,2014,239(1):226.
22 Mukoyoshi M, Kobayashi H, Kusada K, et al. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method[J].Chemical Communications,2015,51(62):12463.
23 Hou Y, Hu W, Zhou X, et al. Vertically aligned nickel 2-methylimidazole metal-organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene[J].Industrial & Engineering Chemistry Research,2017,56(30):8778.
24 Sun D, Sun F, Deng X, et al. Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74[J].Inorganic Chemistry,2015,54(17):8639.
25 Wu S C, Yu L L, Xiao F F, et al. Synthesis of aluminum-based MOF/graphite oxide composite and enhanced removal of methyl orange[J].Journal of Alloys and Compounds,2017,724(15):625.
26 Wu G, Chung H T, Nelson M, et al. Graphene-riched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media[J].ECS Transactions,2011,41(1):1709.
27 Li Q, Xu P, Zhang B, et al. One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries[J].Chemical Communications,2013,49(92):10838.
28 Song L J, Meng H M. Electrodeposition of nanocrystalline nickel alloys and their hydrogen evolution in seawater[J].Acta Physico-Chimica Sinica,2010,26(26):2375.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[3] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[6] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[7] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[8] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[9] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[10] 付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
[11] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[12] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[13] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[14] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[15] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed