Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1417-1422    https://doi.org/10.11896/j.issn.1005-023X.2018.09.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能
褚 梅,李 曦,李 娜,侯美静,李小争,董永志,王 璐
武汉理工大学化学化工与生命科学学院,武汉 430070
Improved Electrocatalytic Hydrogen-evolution Performance of Metal-Organic Framework MOF(Ni)-74 by Using Graphene Oxide Decorations
CHU Mei, LI Xi, LI Na, HOU Meijing, LI Xiaozheng, DONG Yongzhi, WANG Lu
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 2549KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶剂热法制备了金属有机框架材料MOF(Ni)-74及其与氧化石墨烯(GO)的复合材料MOF(Ni)-GO,并利用线性伏安扫描(LSV)等电化学方法在N2饱和的0.5 mol/L H2SO4溶液中对材料的电催化性能进行了检测。实验结果表明, GO的掺杂能显著提升金属有机框架材料MOF(Ni)-74的电催化活性。其中GO含量为8%时,所得复合材料表现出最好的电催化析氢活性,起始电势仅为-0.462 V,塔菲尔斜率为110 mV/dec,同时该材料也表现出很好的电化学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚 梅
李 曦
李 娜
侯美静
李小争
董永志
王 璐
关键词:  金属有机框架(MOFs)  MOF(Ni)-74    氧化石墨烯  电催化  析氢反应    
Abstract: Using a solvothermal method, the metal-organic framework MOF(Ni)-74 and a series of its derivatives MOF(Ni)-GO(w%) differing in graphene oxide (GO) content (w%) were synthesized, and subsequently the linear sweep voltammetry (LSV) test was conducted in a N2-saturated 0.5 mol/L H2SO4 solution in order to determine the electrocatalytic performance of the products to hydrogen evolution reaction (HER). Our experiment confirmed the significantly improved electrocatalytic activity of the GO-decorated MOF(Ni)-74 catalysts, among which the MOF(Ni)-GO(8%) exhibited the best electrochemical catalytic performance towards HER with the lowest onset potential (-0.462 V), the smallest Tafel slope (110 mV/dec), as well as an excellent electrochemical stability.
Key words:  metal-organic frameworks (MOFs)    MOF(Ni)-74    niobium    graphene oxide    electrocatalysis    hydrogen evolution reaction
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O646  
基金资助: 国家自然科学基金(51273155);中央高校基本科研业务费专项资金(2016IB005;2017IB007)
通讯作者:  李曦:通信作者,女,1968年生,教授,主要从事电化学研究 E-mail:chemlixi@whut.edu.cn   
作者简介:  褚梅:女,1992年生,硕士研究生,从事电化学研究 E-mail:chumei943472820@whut.edu.cn
引用本文:    
褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
CHU Mei, LI Xi, LI Na, HOU Meijing, LI Xiaozheng, DONG Yongzhi, WANG Lu. Improved Electrocatalytic Hydrogen-evolution Performance of Metal-Organic Framework MOF(Ni)-74 by Using Graphene Oxide Decorations. Materials Reports, 2018, 32(9): 1417-1422.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.004  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1417
1 Li J, Li F, Guo S X, et al. PdCu@Pd nanocube with Pt-like activity for hydrogen evolution reaction[J].ACS Applied Materials & Interfaces,2017,9(9):8151.
2 Wang J, Zhu H, Yu D, et al. Engineering the composition and structure of bimetallic Au-Cu alloy nanoparticles in carbon nanofibers: Self-supported electrode materials for electrocatalytic water splitting[J]. ACS Applied Materials & Interfaces,2017,9(23):19756.
3 Gómez-Marín A M, Ticianelli E A. Effect of transition metals in the hydrogen evolution electrocatalytic activity of molybdenum carbide[J].Applied Catalysis B: Environmental,2017,209(15):600.
4 Liu Y, Howarth A J, Vermeulen N A, et al. Catalyticdegradation of chemical warfare agents and their simulants by metal-organic frameworks[J].Coordination Chemistry Reviews,2016,346(1):101.
5 Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures ofhofmann-type metal-organic frameworks[J].Coordination Chemistry Reviews,2017,346(1):123.
6 Zhai Rui, Jiao Fenglong, Lin Hongjun, et al. Progress in metal-organic framenorks[J]. Chinese Journal of Chromatography,2014,32(2):107(in Chinese).
翟睿,焦丰龙,林虹君,等.金属有机框架材料的研究进展[J].色谱,2014,32(2):107.
7 Gholampour N, Chaemchuen S, Hu Z Y, et al. Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique[J].Chemical Engineering Journal,2017,322(15):702.
8 Yang J, Ma Z, Gao W, et al. Layeredstructural Co-based MOF with conductive network frames as a new supercapacitor electrode[J].Chemistry-A European Journal,2017,23(3):631.
9 Raoof J B, Hosseini S R, Ojani R, et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J].Energy,2015,90(4):1075.
10 Nie Ming, Lu Shun, Li Qing, et al. Facile solvothermal synthesis of HKUST-1 as electrocatalyst for hydrogen evolution reaction[J]. Scientia Sinica(Chimica),2016,46(4):357(in Chinese).
聂明,陆顺,李庆,等.溶剂热法制备金属有机框架HKUST-1及其析氢性能[J].中国科学:化学,2016,46(4):357.
11 Jahan M, Liu Z, Loh K P. Agraphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J].Advanced Functional Materials,2013,23(43):5363.
12 Liu X, Liu W, Ko M, et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts[J].Advanced Functional Materials,2015,25(36):5799.
13 Chen S, Xue M, Li Y, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J].Journal of Materials Chemistry A,2015,3(40):20145.
14 Jabbari V, Veleta J M, Zarei-Chaleshtori M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J].Chemical Engineering Journal,2016,304(15):774.
15 Yang C, Wu S, Cheng J, et al. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J].Journal of Alloys and Compounds,2016,687(5):804.
16 Bonino F, Chavan S, Vitillo J G, et al. Localstructure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO[J].Chemistry of Materials,2008,20(15):4957.
17 Wang H, Liang Y, Liu L, et al. Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO[J].Applied Catalysis B: Environmental,2017,208(5):22.
18 Wang Q, Xia W, Guo W, et al. Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors[J].Chemistry An Asian Journal,2013,8(8):1879.
19 Cai J, Lu J Y, Chen Q Y, et al. Eu-based MOF/graphene oxide composite: A novel photocatalyst for the oxidation of benzyl alcohol using water as oxygen source[J].New Journal of Chemistry,2017,41(10):3882.
20 Chen Q, Li X, Min X, et al. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode[J].Journal of Electroanalytical Chemistry,2017,789(15):114.
21 Sun X, Xia Q, Zhao Z, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J].Chemical Engineering Journal,2014,239(1):226.
22 Mukoyoshi M, Kobayashi H, Kusada K, et al. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method[J].Chemical Communications,2015,51(62):12463.
23 Hou Y, Hu W, Zhou X, et al. Vertically aligned nickel 2-methylimidazole metal-organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene[J].Industrial & Engineering Chemistry Research,2017,56(30):8778.
24 Sun D, Sun F, Deng X, et al. Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74[J].Inorganic Chemistry,2015,54(17):8639.
25 Wu S C, Yu L L, Xiao F F, et al. Synthesis of aluminum-based MOF/graphite oxide composite and enhanced removal of methyl orange[J].Journal of Alloys and Compounds,2017,724(15):625.
26 Wu G, Chung H T, Nelson M, et al. Graphene-riched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media[J].ECS Transactions,2011,41(1):1709.
27 Li Q, Xu P, Zhang B, et al. One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries[J].Chemical Communications,2013,49(92):10838.
28 Song L J, Meng H M. Electrodeposition of nanocrystalline nickel alloys and their hydrogen evolution in seawater[J].Acta Physico-Chimica Sinica,2010,26(26):2375.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[3] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[4] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[5] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[6] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[11] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[12] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[13] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[14] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[15] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed