Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080088-10    https://doi.org/10.11896/cldb.23080088
  金属与金属基复合材料 |
铝镍钴永磁材料的研究进展
刘悦卿1,2,3, 赵江涛1, 王凤青1, 刘雷1, 丁勇1, 孙颖莉1,*, 闫阿儒1,2,3,*
1 中国科学院宁波材料技术与工程研究所稀土永磁联合创新中心,浙江 宁波 315000
2 中国科学技术大学稀土学院,合肥 230000
3 中国科学院赣江创新研究院,江西 赣州 341000
Research Progress in Alnico Permanent Magnetic Materials
LIU Yueqing1,2,3, ZHAO Jiangtao1, WANG Fengqing1, LIU Lei1, DING Yong1, SUN Yingli1,*, YAN Aru1,2,3,*
1 CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
2 School of Rare Earths, University of Science & Technology of China, Hefei 230026, China
3 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 46763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝镍钴永磁材料因具有较高剩磁和优异的温度稳定性,在航空航天用精密仪表中发挥重要作用。随着稀土资源危机的出现,铝镍钴作为无稀土永磁材料的代表再次成为国际永磁材料领域的研究热点。然而,铝镍钴永磁材料的实际纳米结构和反磁化行为与磁矩一致转动模型存在一定偏差,其矫顽力远低于理论极限,这阻碍了铝镍钴永磁材料的性能提升和应用发展。近年来,人们通过先进表征手段探究铝镍钴永磁材料的微观结构特征,并结合微磁学模拟研究磁性能的影响机制,为铝镍钴永磁材料的结构设计和性能提升提供指导,进而推动其工艺创新和应用突破。本工作综述了铝镍钴永磁材料在微观结构表征和磁性机理认识、矫顽力和温度稳定性优化提升以及新型制备技术探索等方面的研究进展,最后展望了铝镍钴永磁材料研究中尚未解决的问题和未来研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘悦卿
赵江涛
王凤青
刘雷
丁勇
孙颖莉
闫阿儒
关键词:  铝镍钴永磁材料  调幅分解  矫顽力  温度稳定性    
Abstract: Alnico permanent magnetic materials play an important role in precision instruments for aerospace applications due to their high remanence and excellent temperature stability. As a representative of rare-earth-free permanent magnets, Alnicomaterials have once again become one of the international research hotspots in the field of permanent magnet materials with the rare-earth resource crisis. However, the actual nanostructure and magnetization reversal of Alnico materials are different from the magnetic moment consistent rotation model. As a result, the coercivity of Alnico is much lower than the theoretical limit. It hinders the performance enhancement and application development of the Alnico materials. In recent years, the microstructures of Alnico magnets have been explored by advanced characterizations, and the influence mechanism of magnetic properties has been established by combining the micromagnetic simulation with the experimental results. It is favorable to the structural design, performance enhancement, and application breakthrough of Alnico materials. In this work, the research progress of Alnico materials in microstructure characterization and magnetic mechanism is introduced, the improvement of coercivity and temperature stability is overviewed, and the exploration of new preparation technology is summarized. Finally, the unresolved problems in the research of Alnico permanent magnetic materials and the future research development direction are prospected.
Key words:  alnico permanent magnetic materials    spinodal decomposition    coercivity    temperature stability
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TM273  
基金资助: 国家重点研发计划(2022YFB3807900)
通讯作者:  * 孙颖莉,中国科学院宁波材料技术与工程研究所正高级工程师、硕士研究生导师。2006年毕业于国防科技大学材料物理与化学专业,2007年加入中科院宁波材料所工作至今,从事钴基金属永磁材料的微观结构、磁性能、服役特性以及在高技术领域工程化应用方面的研究。发表核心期刊文章18篇,申请发明专利17项,主持制定浙江团体标准1项,参与制定浙江团体标准1项、国家标准5项。先后主持了多项装备发展部、科工局、中科院等国家部委的高技术科技攻关项目。研究成果获得宁波市科技进步一等奖2项,院地合作优秀奖1项。yinglisun@nimte.ac.cn
闫阿儒,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。1993年毕业于西安理工大学;1998年毕业于西安交通大学,获博士学位。1998年至2000年在中国科学院物理研究所磁学国家重点实验室从事博士后研究,2000年至2005年在德国德累斯顿固体材料所做访问学者,2005年8月进入中国科学院宁波材料技术于工程研究所工作至今。长期从事稀土永磁材料的研究工作,主要包括高性能稀土永磁材料,资源节约型稀土永磁材料,热压/热变形稀土永磁材料,钐钴永磁材料等方向的研究。在Acta Materialia、Scripta Materialia、Applied Physics Letter等国际高水平杂志发表论文200余篇,授权发明专利40 余项,编著专著3部。先后担任国家重点研发计划、国家863重大项目、科技部国际合作重点项目、发改委磁性材料创新服务平台项目和工信部稀土专项等项目负责人。获得国家科技进步奖二等奖、稀土科学技术奖一等奖、宁波市科技进步一等奖2项、中国产学研合作创新成果奖、冶金科学技术奖一等奖等奖励。aruyan@nimte.ac.cn   
作者简介:  刘悦卿,2020年6月于东北大学获得工学学士学位。现为中国科学技术大学稀土学院博士研究生,在闫阿儒研究员的指导下进行研究。目前主要研究领域为铝镍钴永磁材料。
引用本文:    
刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
LIU Yueqing, ZHAO Jiangtao, WANG Fengqing, LIU Lei, DING Yong, SUN Yingli, YAN Aru. Research Progress in Alnico Permanent Magnetic Materials. Materials Reports, 2024, 38(23): 23080088-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080088  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080088
1 McCURRIE R A. In: Handbook of ferromagnetic materials, Wohlfarth E P, ed., North-Holland Publishing Company, North-Holland, 1992, pp.107.
2 Oliver D A, Shedden J W, Nature, 1938, 142, 209.
3 Yan M, Peng X L. Fundamentals of magnetism and magnetic materials, Zhejiang University Press, China, 2006, pp.254 (in Chinese).
严密, 彭晓领. 磁学基础与磁性材料, 浙江大学出版社, 2006, pp.254.
4 Yoshiro I, Masaharu T, et al. Transactions of the Japan Institute of Metals, 1974, 15, 371.
5 Xue D Y, Zhang Y C. Journal of Instrument Materials, 1984(2), 63 (in Chinese).
薛德炎, 张延赤. 仪表材料, 1984(2), 63.
6 Sun Y L, Zhao J T, Liu Z, et al. Journal of Magnetism and Magnetic Materials, 2015, 379, 58.
7 Rehman S U, Wei C, Zhang R B, et al. Intermetallics, 2022, 143, 107486.
8 Yu X, Chen S Y, Gu F, et al. Materials Letters, 2022, 310, 131503.
9 Zhang Z Y, Sun J B, Feng J H, et al. Journal of Alloys and Compounds, 2023, 945, 169334.
10 Zhou L, Miller M K, Lu P, et al. Acta Materialia, 2014, 74, 224.
11 Zhou L, Guo W, Poplawskpy J D, et al. Acta Materialia, 2018, 153, 15.
12 Fan M, Liu Y, Jha R, et al. Journal of Magnetism and Magnetic Materials, 2016, 420, 296.
13 Fan M, Liu Y, Jha R, et al. IEEE Transactions on Magnetics, 2016, 52(8), 1.
14 Xing Q, Miller M K, Zhou L, et al. IEEE Transactions on Magnetics, 2013, 49(7), 3314.
15 Lu P, Zhou L, Kramer M J, et al. Scientific Reports, 2014, 4(1), 1.
16 Ji G Q, Zhang P Q, Ma J Q, et al. Journal of Instrument Materials, 1981(5), 13 (in Chinese).
计桂泉, 章佩群, 马济清, 吴萍. 仪表材料, 1981(5), 13.
17 Ke L, Skomski R, Hoffmann T, et al. Applied Physics Letters, 2017, 111(2), 022403.
18 Zhu S M, Zhao J T, Xia W X, et al. Journal of Alloys and Compounds, 2017, 720, 401.
19 Zhao Z H, Zhao J T, Wang M K, et al. Journal of Materials Research and Technology, 2023, 26, 4340.
20 Zhou L, White E, Ke L, et al. Journal of Magnetism and Magnetic Materials, 2019, 471, 142.
21 Zhao Z H, Zhao J T, Wang M K, et al. Journal of Magnetism and Magnetic Materials, 2023, 587, 171156.
22 Won H, Hong Y K, Choi M, et al. IEEE Magnetics Letters, 2021, 12, 1.
23 Rehman S U, Ahmad Z, Haq A ul, et al. Journal of Magnetism and Magnetic Materials, 2017, 442, 136.
24 Rehman U S, Wei C, Huang Q F, et al. Journal of Alloys and Compounds, 2021, 857, 157586.
25 Yang X Y, Xu X L, Feng G N, et al. Applied Surface Science, 2023, 633, 157584.
26 Zhang W, Valloppilly S, Li X, et al. AIP Advances, 2018, 8(5), 056215.
27 Zhou L, Miller M K, Dillon H, et al. Metallurgical and Materials Tran-sactions E, 2014, 1(1), 27.
28 Zhou L, Tang W, Ke L, et al. Acta Materialia, 2017, 133, 73.
29 Chu W G, Fei W D, Yang D Z, et al. Acta Metallurgica Sinica, 1999, 35(12), 12 (in Chinese).
褚卫国, 费维栋, 杨德庄, 等. 金属学报, 1999, 35(12), 12.
30 Zhao J T, Sun Y L, Liu L, et al. Journal of Magnetism and Magnetic Materials, 2017, 442, 208.
31 Akdogan O, Hadjipanayis G, In:International conference on magnetism. Germany, 2000, pp.072001.
32 Akdogan O, Li W F, Hadjipanayis G, Journal of Nanoparticle Research, 2012, 14, 891.
33 Han X, Won H, Choi M, et al. Journal of Alloys and Compounds, 2021, 854, 157038.
34 Mohseni F, Baghizadeh A, Lourenço A A C S, et al. Journal of Management, 2017, 69, 1427.
35 Lin P H, Wang X K, Zhang Y X, et al. Electrical Alloys, 1994(3), 6 (in Chinese).
林培豪, 王兴奎, 张一新, 等. 电工合金, 1994(3), 6.
36 Liu T, Li W, Zhu M, et al. Journal of Applied Physics, 2014, 115(17), 17A751.
37 Liu X L. Study of the Effect of Thermomagnetic Treatment on Microstructure and Magneticstability of Alnico Alloy. Master's thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
刘晓丽. 磁场热处理对Alnico合金显微组织及磁稳定性影响研究. 硕士学位论文, 哈尔滨工业大学, 2011.
38 Zhao J T, Sun Y L, Liu L, et al. Journal of Magnetism and Magnetic Materials, 2020, 508, 166865.
39 Zhao J T, Sun Y L, Feng X C, et al. Chinese Patent, CN106816247B, 2019(in Chinese).
赵江涛, 孙颖莉, 冯孝超, 等. 中国专利, CN106816247B, 2019.
40 Liao Y Q. Study of magnetic stability of alnico alloy. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
廖雅琴. 铝镍钴合金的磁稳定性研究. 硕士学位论文, 哈尔滨工业大学, 2014.
41 Tang W, Zhou L, Kassen A G, et al. IEEE Transactions on Magnetics, 2015, 51(11), 1.
42 Kassen A G, White E M H, Tang W, et al. Journal of Management, 2017, 69(9), 1706.
43 Aanderson I, Kassen A, White E, et al. AIP Advances, 2017, 7, 056209.
44 Anderson I, Kassen A, White E, et al. Journal of Applied Physics, 2015, 117(17), 17D138.
45 White E M H, Kassen A G, Simsek E, et al. IEEE Transactions on Magnetics, 2017, 53(11), 1.
46 White E, Rinko E, Prost T, et al. Applied Sciences, 2019, 9(22), 4843.
47 Rottmann P F, Polonsky A T, Francis T, et al. Materials Today, 2021, 49, 23.
48 LÖwe K, DÜrrschnabel M, Molina-luna L, et al. Journal of Magnetism and Magnetic Materials, 2016, 407, 230.
49 Han X H, Sun J B, Liu T Y, et al. Journal of Alloys and Compounds, 2019, 785, 715.
50 Zhang S D, Wang S, Chen S Y, et al. Physica B: Condensed Matter, 2020, 597, 412423.
51 Zhang C, Li Y, Han X H, et al. Journal of Magnetism and Magnetic Materials, 2018, 451, 200.
52 Zhang H T, Zhang T, Zhang X Y. Advanced Science, 2023, 10(13), 2300193.
53 Li X H, Li L, Li Y Q, et al. Nano Letters, 2022, 22(18), 7644.
54 Hu M J, Zhang H T. Journal of Applied Physics, 2023, 133(17), 170901.
[1] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[2] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[3] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[4] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[5] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed