Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11153-11161    https://doi.org/10.11896/cldb.19030026
  金属与金属基复合材料 |
合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述
马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚
华北理工大学冶金与能源学院,唐山063210
Effect of Alloying Elements and Aging Treatment on the Properties of Kappa-Carbide in Fe-Mn-Al-C Low Density Steels: a Review
MA Tao, LI Huirong, GAO Jianxin, SONG Hongwei, LI Xin, LI Yungang
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
下载:  全 文 ( PDF ) ( 3585KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe-Mn-Al-C低密度钢具有密度低、力学性能优良的特性,在汽车结构材料领域具有广阔的应用前景。作为Fe-Mn-Al-C低密度钢中主要的析出相,κ-碳化物的沉淀硬化效应是Fe-Mn-Al-C低密度钢中最为显著的强化机制,对优化低密度钢的力学性能有着重要的作用。
   然而,κ-碳化物的析出形态特征及位置对 Fe-Mn-Al-C低密度钢性能的作用机制存在差异,且κ-碳化物的形态特征易受到低密度钢合金元素构成及热处理条件的影响。因此,近年来科技工作者对Fe-Mn-Al-C低密度钢中κ-碳化物的形成机制及形态特征影响因素开展了深入的研究,并取得了一定的成果。
   研究结果表明,Fe-Mn-Al-C低密度钢中κ-碳化物的形成机制为调幅分解+有序化反应。低密度钢中Al含量增加有利于促进κ-碳化物的析出与长大,Mn含量对全奥氏体Fe-Mn-Al-C钢中κ-碳化物析出的影响较弱,对双相Fe-Mn-Al-C钢中κ-碳化物的析出有明显的抑制作用。在400~650 ℃的时效温度下,细小的κ-碳化物会在奥氏体基体弥散分布,而在650~750 ℃的较高温度范围内时效时,粗大的碳化物会以片层状形态存在于奥氏体或两相区晶界。κ-碳化物对Fe-Mn-Al-C钢力学性能的影响具有两重性,细小的晶内κ-碳化物能够起到强化作用,而粗大的晶粒间κ-碳化物则造成材料延展性及韧性的损失。
   本文基于国内外研究进展,分析总结了Fe-Mn-Al-C低密度钢中κ-碳化物的形成机理与形态特征的影响因素,以及κ-碳化物形态特性对材料性能的影响规律,并对控制Fe-Mn-Al-C低密度钢κ-碳化物形态特征方法进行了总结和展望。总结认为Fe-Mn-Al-C钢中Al的质量分数应控制在7%~10%之间,以为κ-碳化物析出提供驱动力,时效处理温度为550~650 ℃,时效时间在1 h以内,以避免形成粗大的κ-碳化物破坏低密度钢的性能,同时展望了通过向Fe-Mn-Al-C低密度钢中添加强碳化物形成元素抑制粗大的κ-碳化物形成的新工艺手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马涛
李慧蓉
高建新
宋宏伟
李欣
李运刚
关键词:  Fe-Mn-Al-C低密度钢  κ-碳化物  调幅分解  有序化  时效    
Abstract: Owing to the characteristics of low-density and excellent mechanical properties, Fe-Mn-Al-C low-density steels have broad application prospects in the field of automotive structural materials. Kappa-carbide,as the main precipitate phase in Fe-Mn-Al-C low-density steels, its precipitation hardening effect is the most significant strengthening mechanism in optimizing the mechanical properties of Fe-Mn-Al-C low-density steels.
However, different precipitation morphology characteristics and locations of kappa-carbides present different effects on the performance and mechanism of Fe-Mn-Al-C low-density steels, and the morphological characteristics of kappa-carbides are easily affected by alloy element composition and heat treatment conditions of low density steels. Therefore,considerable endeavors have been made aiming at the formation mechanism and morphological characteristics of kappa-carbides in Fe-Mn-Al-C low-density steels through decades, and some results have been achieved.
The results show that the formation mechanism of kappa-carbide in Fe-Mn-Al-C low-density steels is spinodal decomposition plus ordering reaction. The increase of Al content in low-density steels is beneficial to the precipitation and growth of kappa-carbide. The influence of Mn content on the precipitation of kappa-carbide in austenitic Fe-Mn-Al-C steels is relatively poor, inhibiting the precipitation of kappa-carbide in duplex Fe-Mn-Al-C steels obviously. Fine disperse kappa-carbides are well distributed in the austenite matrix of Fe-Mn-Al-C low-density steels at ageing temperatures of 400 ℃ to 650 ℃,while coarse kappa-carbides precipitate in the austenite or two-phase grain boundaries in a lamellar form at higher temperatures of 650—750 ℃. The effect of kappa-carbide on the mechanical properties of Fe-Mn-Al-C steels, with its dual nature, can both streng-then in fine intragranular form, and cause the loss of ductility and toughness in coarse intergranular form.
Based on the related research at home and abroad,this paper reviews the influence factors of formation mechanism and structure characteristics of kappa-carbide in Fe-Mn-Al-C low-density steels as well as the influential rules of structure characteristics of kappa-carbide on the morphological characteristics of Fe-Mn-Al-C low-density steels. The methods of controlling morphological characteristics of kappa-carbides in Fe-Mn-Al-C low-density steels are concluded and prospected that, the mass fraction of Al element in Fe-Mn-Al-C steels should be controlled between 7% and 10% to provide driving force for kappa-carbide precipitation, with the aging treatment temperature between 550—650 ℃ and the aging time less than 1 hour to avoid the formation of coarse kappa-carbides to damage the properties of low density steels. Moreover, a new process to restrain the formation of coarse kappa-carbide by adding strong carbide forming elements to Fe-Mn-Al-C low-density steels is prospected.
Key words:  Fe-Mn-Al-C low density steel    kappa-carbide    spinodal decomposition    ordering    aging
                    发布日期:  2020-05-13
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51974129);华北理工大学研究生创新项目(2018B21)
通讯作者:  lyg@ncst.edu.cn   
作者简介:  马涛,2017年3月毕业于华北理工大学,获得工学硕士学位。现为华北理工大学冶金与能源博士研究生,在李运刚教授的指导下进行研究。目前主要研究领域为低密度钢组织性能优化。
李运刚,华北理工大学冶金与能源学院教授、博士研究生导师。1985年5月本科毕业于东北大学有色冶金专业,获工学硕士学位,2005年9月取得东北大学冶金物理化学专业博士学位。长期从事冶金过程理论与工艺、新型金属材料以及资源综合利用的研究开发工作。承担国家科技支撑计划项目2项,国家自然科学基金6项,河北省自然科学基金、支撑计划项目4项及横向科研课题40余项;发表学术论文130余篇,被SCI、EI收录40余篇;出版专著及教材4部;取得国际先进水平以上的鉴定成果6项;申报发明专利16项,授权10项;获省科技进步、自然科学或优秀教学成果奖4项。
引用本文:    
马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
MA Tao, LI Huirong, GAO Jianxin, SONG Hongwei, LI Xin, LI Yungang. Effect of Alloying Elements and Aging Treatment on the Properties of Kappa-Carbide in Fe-Mn-Al-C Low Density Steels: a Review. Materials Reports, 2020, 34(11): 11153-11161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030026  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11153
1 Rahnama A, Dashwood R, Sridhar S.Computational Materials Science, 2017,126,152.
2 Tang D, Mi Z L, Chen Y L. Iron & Steel, 2005, 40(6),1 (in Chinese).
唐荻, 米振莉, 陈雨来.钢铁, 2005, 40(6),1.
3 Chen S, Rana R, Haldar A, et al.Progress in Materials Science, 2017,89,345.
4 Kang Y L.Theory and Technology process and forming for advanced automobile steel and sheets,Metallurgical Industry Press, China, 2009(in Chinese).
康永林. 现代汽车板工艺及成形理论与技术,冶金工业出版社, 2009.
5 Song H, Yoo J, Kim S H, et al.Acta Materialia, 2017, 135,215.
6 Li X, Ma T, Cao Y P, et al. Hot Working Technology, 2018, 47(6),15(in Chinese).
李欣, 马涛, 曹玉鹏, 等.热加工工艺, 2018, 47(6),15.
7 Kim H, Suh D W, Kim N J. Science & Technology of Advanced Materials, 2013, 14,1.
8 Howell R A, Aken D C V. Iron and Steel Technology, 2009, 6(4),193.
9 Ding H, Yang P.Journal of Materials & Metallurgy, 2010, 9(4),265(in Chinese).
丁桦, 杨平.材料与冶金学报, 2010,9(4),265.
10 Moon J, Park S J, Jang J H, et al.Scripta Materialia, 2017, 127,97.
11 Xing J, Wei Y, Hou L. JOM, 2018, 70(6),929.
12 Frommeyer G, Brüx U. Steel Research International, 2006, 77(9-10),627.
13 Min C H, Koo J M, Lee J K, et al.Materials Science and Engineering: A, 2013, 586,276.
14 Yang Y,Zhang J L, Hua C H, et al. Materials Science & Engineering A, 2019, 748,74.
15 Yao M J, Dey P, Seol J B, et al.Acta Materialia, 2016, 106,229.
16 Palm M, Inden G.Intermetallics, 1995, 3(6),443.
17 Kimura Y, Handa K, Hayashi K, et al.Intermetallics, 2004, 12(6),607.
18 Wan X L, Cheng L, Wu K M.Metals & Materials International, 2010, 16(6),865.
19 Radhakrishna A, Baligidad R G, Sarma D S.Scripta Materialia, 2001, 45(9),1077.
20 Yao M J, Welsch E, Ponge D, et al. Acta Materialia, 2017, 140,258.
21 Jeong S, Kim B, Moon J, et al.Materials Science and Engineering: A, 2018, 726,223.
22 Lee S, Jeong J, Lee Y K.Journal of Alloys and Compounds, 2015, 648,149.
23 Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels. Ph.D.Thesis, Northeastern University, China, 2015 (in Chinese).
吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究. 博士学位论文, 东北大学, 2015.
24 Bartlett L N, Aken D C V, Medvedeva J, et al.Metallurgical and Mate-rials Transactions A, 2014, 45(5),2421.
25 Bartlett L, Van Aken D. JOM, 2014, 66(9),1770.
26 Han K H, Choo W K. Metallurgical Transactions A, 1989, 20(2),205.
27 Cheng W C. JOM, 2014, 66(9),1809.
28 Cheng W C, Cheng C Y, Hsu C W, et al.Materials Science and Enginee-ring: A, 2015, 642,128.
29 Bentley A P.Journal of Materials Science Letters, 1986, 5(9),907.
30 Chao C Y, Hwang L K, Liu T F.Scripta Metallurgica et Materialia, 1993, 29(5),647.
31 Cheng W C, Song Y S, Lin Y S, et al.Metallurgical & Materials Transactions A, 2014, 45(3),1199.
32 Lu W J, Qin R S. Materials & Design, 2016, 104,211.
33 Moon J, Park S J, Lee C, et al. Metallurgical and Materials Transactions A, 2017, 48,4500.
34 Sato K, Tagawa K, Inoue Y.Materials Science & Engineering A, 1989, 111,45.
35 Sato K, Tagawa K, Inoue Y.Metallurgical Transactions A, 1990, 21(1),5.
36 Wang Z G, Zhou W, Fu L M, et al.Materials Science and Engineering: A, 2017,696,503.
37 Huang H, Gan D, Kao P W.Scripta Metallurgica et Materialia, 1994, 30(4),499.
38 Raabe D, Springer H, Gutierrez-Urrutia I, et al.JOM, 2014, 66(9),1845.
39 Springer H, Raabe D.Acta Materialia, 2012, 60(12),4950.
40 Li M C, Chang H, Kao P W, et al.Materials Chemistry and Physics, 1999, 59(1),96.
41 Lee K, Park S J, Lee J, et al.Journal of Alloys and Compounds, 2015, 656,805.
42 Dey P, Nazarov R, Dutta B, et al.Physical Review B, 2017, 95(10),104.
43 Sohn S S, Song H, Kim J G, et al.Metallurgical & Materials Transactions A, 2016, 47(2),706.
44 Yang M X, Yuan F P, Xie Q G, et al.Acta Materialia, 2016, 109,213.
45 Zhao C, Song R, Zhang L, et al.Materials & Design, 2016, 91,348.
46 Lin C L, Chao C G, Juang J Y, et al.Journal of Alloys & Compounds, 2014, 586(4),616.
47 Gutierrez-Urrutia I, Raabe D.Materials Science and Technology, 2014, 30(9),1099.
48 Liu L, Li C, Yang Y, et al.Materials Science and Engineering: A, 2017, 679,282.
49 Sutou Y, Kamiya N, Umino R, et al.ISIJ International, 2010, 50(6),893.
50 Sohn S S, Lee B J, Lee S, et al.Metallurgical and Materials Transactions A, 2014, 45(12),5469.
51 Sohn S S, Lee B J, Lee S, et al.Acta Materialia, 2013, 61(13),5050.
52 Jeong J, Lee C Y, Park I J, et al.Journal of Alloys and Compounds, 2013, 574,299.
53 Acselrad O, Kalashnikov I, Silva E, et al.Metal Science & Heat Treatment, 2006, 48(11-12),543.
54 Liu S Z,Wang C X,Li Y, et al. Heat Treatment of Metals, 2015, 40(11),103(in Chinese).
刘少尊, 王春旭, 厉勇, 等.金属热处理, 2015, 40(11),103.
55 Hyejin S, Yunik K, Su S S, et al. Materials Science and Engineering: A, 2018, 730,177.
56 Zuazo I, Hallstedt B, Lindahl B, et al.JOM, 2014, 66(9),1747.
57 Sohn S S, Lee B J, Lee S, et al.Acta Materialia, 2013, 61(15),5626.
58 Seo C H, Kwon K H, Choi K, et al.Scripta Materialia, 2012, 66(8),519.
59 Xu Y P. Effect of heat treatment on the microstructure and properties of automobilehigh-strength low-density steel. Master's Thesis, Chongqing University, China, 2017 (in Chinese).
徐越鹏. 热处理对汽车用高强低密度钢组织及性能的影响.硕士学位论文, 重庆大学,2017.
60 Jeong S, Park G, Kim B, et al.Materials Science and Engineering A, 2019, 742,61.
61 Choi K, Seo C H, Lee H, et al.Scripta Materialia, 2010, 63(10),1028.
62 Lu W J, Zhang X F, Qin R S.Materials Letters, 2015,138,96.
63 Zambrano O A, Valdés J, Aguilar Y, et al.Materials Science and Engineering: A, 2017, 689,269.
64 Allain S, Chateau J P, Bouaziz O, et al.Materials Science & Engineering A,2004, 387-389,158.
65 Song W, Ingendahl T, Bleck W.Acta Metallurgica Sinica (English Letters), 2014, 27(3),546.
66 Kim C W, Kwon S I, Lee B H. Materials Science & Engineering A, 2016, 673,108.
67 Moon J, Ha H Y, Park S J, et al.Journal of Alloys and Compounds, 2019, 775,1136.
68 Wu Z Q, Ding H, An X H, et al.Materials Science & Engineering A, 2015,639, 187.
69 Liu D, Cai M, Ding H, et al.Materials Science & Engineering A, 2018, 715,25.
70 Han J, Nam J H, Lee Y K.Acta Materialia, 2016, 113,1.
71 Wu Z Q, Ding H, Li H Y, et al.Materials Science & Engineering A, 2013, 584(9),150.
72 Lee J, Park S, Kim H, et al.Metals and Materials International, 2018, 24,1.
73 Welsch E, Ponge D, Hafez Haghighat S M, et al. Acta Materialia, 2016, 116,188.
74 Lehnhoff G R, Findley K O, Cooman B C D.Scripta Materialia, 2014, 92,19.
75 Yong Q L.Secondary phase in Steels,Metallurgical Industry Press, China, 2006(in Chinese).
雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006.
76 Zhang Z Y, Li Z D,Yong Q L, et al.Acta Metallurgica Sinica, 2015, 51(3),15(in Chinese).
张正延, 李昭东, 雍岐龙, 等.金属学报, 2015, 51(3),315.
77 Yang J X, Zheng Q, Sun X F, et al.Materials Science & Engineering A, 2007, 465(1),100.
78 He L Z, Zheng Q, Sun X F, et al.Materials Science and Engineering A, 2005, 397(1),297.
[1] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[2] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[3] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[4] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[5] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[6] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[7] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[8] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[11] 王勇, 杨贤军, 喻文新, 黄树东, 徐永红, 吴达, 乔丽英. 化学成分及时效处理对镍铬铝铁精密电阻合金性能的影响[J]. 材料导报, 2019, 33(24): 4131-4135.
[12] 方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
[13] 方文, 王海宾, 张朝磊, 王宏斌, 马晓艺. 预应力钢绞线用大规格82B盘条冬季时效期的系统控制[J]. 材料导报, 2019, 33(14): 2408-2412.
[14] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[15] 安小雪, 李勇, 王福, 王昭东, 邸洪双. 气垫式预时效工艺对6016铝合金汽车板性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1300-1305.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed