Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11145-11152    https://doi.org/10.11896/cldb.19010197
  金属与金属基复合材料 |
黑色素金属螯合物的研究进展及应用
任燕玲1, 杨柳1, 高莉1,2, 王芳1, 史楠1, 赵英虎3, 郭丽晓1, 王海宾1
1 中北大学化学工程与技术学院,太原030051
2 山西医科大学基础医学院,太原030001
3 中北大学环境与安全工程学院,太原030051
Research Progress and Application of Melanin Metal Chelate
REN Yanling1, YANG Liu1, GAO Li1,2, WANG Fang1, SHI Nan1, ZHAO Yinghu3, GUO Lixiao1, WANG Haibin1
1 School of Chemical Engineering and Technology, North University of China, Taiyuan 030051,China
2 School of Basic Medical Sciences, Shanxi Medical University,Taiyuan 030001,China
3 School of Environment and Safety Engineering,North University of China, Taiyuan 030051,China
下载:  全 文 ( PDF ) ( 3117KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着生物质资源的开发及利用研究,黑色素的发展已引起了研究者们广泛的兴趣。天然黑色素固有的结构和功能已被逐步开发应用于生物、医学、环境等领域。然而,由于黑色素本身高聚物的结构特点和难溶性质,极大地阻碍了黑色素材料的发展。螯合金属离子是黑色素重要的性质之一,且黑色素能为金属离子提供多个潜在结合和生物吸附位点。黑色素金属螯合物的研究能较好地协同发挥黑色素与金属离子的生物活性,拓展黑色素的应用研究和金属基复合材料的设计与开发。相较黑色素资源,黑色素金属螯合物更具有生物活性的特殊性和应用的广泛性。
   黑色素金属螯合物的发展可能依赖于黑色素结构中含有不同的官能团,能为金属离子提供多个非等效的结合位点。这些都在一定程度上简化了黑色素金属螯合物的制备过程,因而黑色素可自发地通过直接合成法和分步合成法两种方式配位共价结合金属离子。但黑色素金属螯合效果会受到pH、原料配比、时间、温度以及金属离子等的影响,为进一步探究形成的螯合物结构、性能和金属离子对黑色素结构的影响,可通过超微结构观测、分子结构测定、金属结合量以及结合位点的测定等多种方式联用进行分析。
   当前,黑色素金属螯合物的研究已取得了初步的成功。黑色素对汞、铅、镉、铬、钼、铀和钡等有毒元素具有吸附作用,有望用于水的净化处理过程;黑色素与金属离子的交换性能在维持机体稳态、氧化应激和金属离子的动态平衡过程中具有重要的生物学意义;黑色素与膳食金属、磁性金属、重金属等作用形成的螯合物已被应用于电极材料、催化剂、成像材料、着色印刷、光热治疗等领域。另外黑色素与金属离子间的作用力研究在确定黑色素的物理结构和黑色素金属螯合物的性能等方面也至关重要。
   本文归纳了黑色素金属螯合物的研究进展,分别对黑色素金属螯合物的制备、螯合机理及表征等进行介绍,综述了现阶段黑色素金属螯合物在吸附材料、金属元素补充剂、电极材料、催化剂和成像材料等方面的应用,分析了黑色素金属螯合物在现阶段的研究的不足并展望其发展前景,以期为金属基功能材料的开发研究和黑色素的综合利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任燕玲
杨柳
高莉
王芳
史楠
赵英虎
郭丽晓
王海宾
关键词:  黑色素  金属螯合物  螯合机理    
Abstract: With the development and utilization of biomass resources, the development of melanin has aroused widespread interest among researchers. The inherent structure and function of natural melanin has been gradually developed into applications in biology, medicine and the environment. However, due to the structural characteristics and insoluble properties of its own high polymers, the development of melanin materials has been greatly hindered. Metal chelation is one of the important properties of melanin, and melanin provides multiple potential binding and biosorption sites for metal ions. The study of melanin metal chelate can better synergize the biological activity of melanin and metal ions, expand the application research of melanin and the design and development of metal matrix composites. Compared with melanin resources, melanin metal chelates have more specificity of biological activity and wide application.
The development of melanin metal chelate may depend on the different functional groups in the melanin structure, which can provide multiple non-equivalent binding sites for metal ions.These all simplify the preparation process of melanin metal chelate to a certain extent, and thus melanin can spontaneously covalently bond to metal ions by direct synthesis and step synthesis. However, its chelation effect is affected by pH, raw material ratio, time, temperature and metal ions, In order to further explore the formation of chelate structure, properties and the effect of metal ions on melanin structure, it can be analyzed by means of ultrastructural observation, molecular structure determination, metal binding amount and determination of binding sites.
At present, the research on melanin chelated metals has achieved initial success. Melanin has an adsorption effect on toxic elements such as mercury, lead, cadmium, chromium, molybdenum, uranium and thorium, and is expected to be used in the purification process of water; the exchange performance of melanin and metal ions has important biological significance in maintaining the homeostasis, oxidative stress and dynamic balance of metal ions; chelates formed by the action of melanin and dietary metals, magnetic metals and heavy metals have been applied to electrode materials, catalysts, imaging materials, color printing, photothermal therapy and other fields. In addition, the study of the interaction between melanin and metal ions is also crucial in determining the physical and structural properties of melanin and the properties of melanin metal chelates.
In this paper, the research progress of melanin chelated metals is summarized. The preparation, chelation mechanism and characterization of melanin metal chelate are introduced respectively.The application of melanin metal chelate in adsorbent materials, metal element supplements, electrode materials, catalysts and imaging materials is reviewed.The shortcomings of melanin metal chelate at present stage are analyzed and its prospects are expected. Provide reference for the development and research of metal-based functional materials and the comprehensive utilization of melanin.
Key words:  melanin    metal chelate    chelation mechanism
                    发布日期:  2020-05-13
ZTFLH:  TS959.9  
基金资助: 山西省高等学校科技创新项目(201802075);山西省重点研发计划项目(201803D221013-4;201803D221026-4);纳米功能复合材料山西省重点实验室开放基金项目(NFCM201603)
通讯作者:  gaoli@nuc.edu.cn   
作者简介:  任燕玲,2017年6月毕业于吕梁学院,获得工学学士学位。现为中北大学化学工程与技术研究院硕士研究生,在高莉副教授的指导下进行研究。主要研究领域的生物质资源的开发与利用。
高莉,中北大学化学工程与技术研究院副教授,硕士生导师。2008年于山西农业大学获得农学博士学位,2008年7月在中北大学任职,主要从事生物质资源的高值转化与利用研究、纳米材料的生物相容性研究工作。主持和参研项目:山西省重点研发计划项目;山西省高等学校科技创新项目;纳米材料的结构与性能研究等。已获得和授权专利4篇,发表EI、SCI论文等。
引用本文:    
任燕玲, 杨柳, 高莉, 王芳, 史楠, 赵英虎, 郭丽晓, 王海宾. 黑色素金属螯合物的研究进展及应用[J]. 材料导报, 2020, 34(11): 11145-11152.
REN Yanling, YANG Liu, GAO Li, WANG Fang, SHI Nan, ZHAO Yinghu, GUO Lixiao, WANG Haibin. Research Progress and Application of Melanin Metal Chelate. Materials Reports, 2020, 34(11): 11145-11152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010197  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11145
1 Wang Y, Su J, Li T, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36281.
2 Dong W, Wang Y, Huang C, et al. Journal of Thermal Analysis & Calorimetry, 2014, 115(2),1661.
3 d'Ischia M, Napolitano A, Pezzella A, et al. Angewandte Chemie International Edition, 2010, 48(22),3914.
4 Shanmuganathan K, Cho J H, Iyer P, et al. Macromolecules, 2016, 44(24),9499.
5 Ju K Y, Lee Y, Lee S, et al.Biomacromolecules, 2011, 12(3),625.
6 Kang J J. Separation of melanin from black sesame and its structural pro-perties. Master's Thesis, Nanchang University, China, 2015(in Chinese).
康静静. 黑芝麻黑色素的分离及其结构性质的研究.硕士学位论文,南昌大学, 2015.
7 Wang G L. Extraction, Purification and properties of melanin from prickly ash seeds. Master's Thesis, Shaanxi University of Science and Techno-logy, China, 2014(in Chinese).
王改利. 花椒籽种皮黑色素的提取纯化及性能研究.硕士学位论文, 陕西科技大学, 2014.
8 Wang Y, Wang X, Li T, et al.ACS Applied Materials & Interfaces, 2018, 10, 13100.
9 Hong L, Simon J D. Journal of Physical Chemistry B, 2007, 111(28),7938.
10 Menter J M. Polymer International, DOI:10.1002/pi.5194.
11 Fan L L, Zhou M Y, Qu X N, et al.Hot Working Technology, 2018, 47(4), 8 (in Chinese).
范玲玲, 周明扬, 屈晓妮, 等.热加工工艺, 2018,47(4),8.
12 Yang L, Zhao Y H, Wang F, et al.Journal of Biomedical Engineering, 2017, 34(6), 972 (in Chinese).
杨柳, 赵英虎, 王芳,等.生物医学工程学杂志, 2017,34(6),972.
13 Solano F.New Journal of Science,2014, 2014,1.
14 Prota G, Searle A G. Genetics Selection Evolution, 1978, 10(1),1.
15 Yao Z Y, Qi J H. Molecules, 2016, 21(4),487.
16 Kim Y J, Uyama H. Cellular and Molecular Life Sciences, 2005, 62(15),1707.
17 Nosanchuk J D, Stark R E, Arturo C. Frontiers in Microbiology, 2015, 6(12),1.
18 Wei G H, Xu X D, Miao F, et al.China Food Additives, 2011(3), 170 (in Chinese).
魏国华, 许新德, 缪飞,等.中国食品添加剂, 2011(3),170.
19 Zhao B. Extraction of melanin from Aureobasidium pullulans and its pro-perties. Master's Thesis, Tianjin University of Science & Technology, China, 2013(in Chinese).
赵博. 出芽短梗霉黑色素提取及其性质研究.硕士学位论文, 天津科技大学, 2013.
20 Vitiello G, Pezzella A, Zanfardino A, et al. Materials Science & Engineering C, 2017, 75(12),454.
21 Greco G, Panzella L, Verotta L, et al. Journal of Natural Products, 2011, 74(4),675.
22 Toledo A V, Franco M E E, Lopez S M Y, et al. Physiological & Molecular Plant Pathology, 2017,99(4),2.
23 Chu M, Hai W, Zhang Z, et al. Biomaterials, 2016, 91(3),182.
24 Watt A A R, Bothma J P, Meredith P. Soft Matter, 2009, 5(19),3754.
25 Szpoganicz B, Gidanian S, Kong P, et al. Journal of Inorganic Bioche-mistry, 2002, 89(1),45.
26 Stainsack J, Mangrich A S, Maia C M B F, et al. Inorganica Chimica Acta, 2003, 356(6),243.
27 Barbara Bilińska. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2001, 57(12),2525.
28 Liu Y, Simon J D. Pigment Cell Research, 2004, 17(4),449.
29 Chen Shiguo. Study on polysaccharides and melanin of squid ink. Master's Thesis, Ocean University of China, China, 2007(in Chinese).
陈士国. 鱿鱼墨多糖和黑色素的研究.硕士学位论文, 中国海洋大学, 2007.
30 Costa T G, Szpoganicz B, Caramori G F, et al.Journal of Coordination Chemistry, 2014, 67(6),986.
31 Saini A S, Melo J S. Bioresource Technology, 2013, 149(12),155.
32 Manirethan V, Raval K, Rajan R, et al. Journal of Environmental Management, 2018, 214(2),315.
33 Gallas J M, Littrell K C, Seifert S, et al. Biophysical Journal, 1999, 77(2),1135.
34 He H, Chang M Q, Song H B.Food & Machinery, 2017(10), 205 (in Chinese).
何洪, 常满倩, 宋洪波.食品与机械, 2017(10),205.
35 Song S, Yang L, Ye M, et al. Food & Function, 2016, 7(3),1508.
36 An M C, Na N T L, Thang P N, et al. Environmental Health & Preventive Medicine, 2018, 23(1),9.
37 Chen S H, Wang D D.Journal of South-Central University for Nationalities(Natural Sciences Edition), 2010, 29(2), 22(in Chinese).
陈胜慧, 王丹丹.中南民族大学学报(自然科学版), 2010, 29(2),22.
38 Li Y, Xie Y, Wang Z, et al. ACS Nano, 2016, 10(11),10186.
39 Froncisz W, Sarna T, Hyde J S. Archives of Biochemistry & Biophysics, 1980, 202(1),289.
40 Fogarty R V, Tobin J M. Enzyme and Microbial Technology, 1996, 19(4),311.
41 Lei M. Study on the bioactivity ofsquid ink melanin and melanin iron. Master Thesis, Ocean University of China, China, 2008(in Chinese).
雷敏. 鱿鱼墨黑色素及黑色素铁生物活性的研究. 硕士学位论文,中国海洋大学, 2008.
42 Chen S, Xue C, Wang J, et al. Bioinorganic Chemistry & Applications, 2009, 2009(1),901563.
43 Sajjan S S, Anjaneya O, Kulkarni G B, et al. Korean Journal of Micro-biology & Biotechnology, 2013, 41(1),60.
44 Lv L, Li H S, Zheng L, et al.Oceanologia et Limnologia Sinica, 2016, 47(2), 484 (in Chinese).
吕玲, 李和生, 郑丽,等.海洋与湖沼, 2016, 47(2),484.
45 Bush W D, Simon J D. Pigment Cell Research, 2010, 20(2),134.
46 Wang A, Jing H. Dalton Transactions, 2014, 43(3),1011.
47 Zhang Hongding, Wang Haibo, Liu Yanming.In: Abstract of the 2014 Annual Conference of Henan Chemical Society, Henan, 2014, pp. 180(in Chinese).
张红定, 王海波, 刘彦明.河南省化学会2014年学术年会论文摘要集. 2014, pp. 180.
48 González O A, Grumelli D, Vericat C, et al. Nanoscale, 2011, 3(4),1708.
49 Kim Y J, Wu W, Chun S E, et al. PNAS, 2013, 110(52),20912.
50 Sun Y, Hong S, Ma X, et al. Chemical Science, 2016, 7(9),5888.
51 Geng G P, Zhuo R Q.Chinese Science Bulletin, 2001, 46(7),531 (in Chinese).
鄢国平, 卓仁禧.科学通报, 2001, 46(7),531.
52 Xiao Y, Wu Y J, Zhang W J, et al.Chinese Journal of Analytical Chemistry, 2011, 39(5),757 (in Chinese).
肖研, 吴亦洁, 章文军,等.分析化学, 2011, 39(5),757.
53 Liopo A, Su R, Oraevsky A A.Photoacoustics, 2015, 3(1),35.
54 Fan Q, Cheng K, Hu X, et al. Journal of the American Chemical Society, 2014, 136(43),15185.
55 Enochs W S, Petherick P, Bogdanova A, et al. Radiology, 1997, 204(2),417.
56 Liu Y, Ai K, Liu J, et al. Advanced Materials, 2013, 25(9),1353.
57 Xu W, Sun J, Li L, et al. Biomaterials Science, 2018, 6, 207.
58 Hu D, Liu C, Song L, et al. Nanoscale, 2016, 8(39),17150.
59 Hong S H, Sun Y, Tang C, et al. Bioconjugate Chemistry, 2017, 28, 1925.
60 Ju K Y, Lee J W, Im G H, et al. Biomacromolecules, 2013, 14(10),3491.
61 Chen W, Hashimoto K, Omata Y, et al.Environmental Health and Preventive Medicine, 2019, 24(1),1.
62 Ma S, Liu L, Bromberg V, et al. ACS Applied Materials Interfaces, 2014, 6(22),19494.
63 Song S. A new study on the structure, modification and activity of melanin from Trichophyton rubrum. Master's Thesis,Hefei University of Technology,China, 2016(in Chinese).
宋升. 一种新的粒毛盘菌黑色素结构、修饰及活性研究. 硕士学位论文, 合肥工业大学, 2016.
64 Jiang Q, Yang W L. In:National Polymer Materials Science and Engineering Symposium, Guilin, 2016, pp. 468.
姜琴,杨武利.全国高分子材料科学与工程研讨会. 2016, pp. 468.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed