Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4131-4135    https://doi.org/10.11896/cldb.18100180
  金属及金属基复合材料 |
化学成分及时效处理对镍铬铝铁精密电阻合金性能的影响
王勇1, 杨贤军2, 喻文新2, 黄树东1, 徐永红2, 吴达2, 乔丽英1
1 重庆大学材料科学与工程学院,重庆 400045
2 重庆川仪金属功能材料分公司,重庆 400702
Effect of Chemical Composition and Aging Treatment on Properties of Ni-Cr-Al-Fe Precise Resistance Alloy
WANG Yong1, YANG Xianjun2, YU Wenxin2, HUANG Shudong1, XU Yonghong2, WU Da2, QIAO Liying1
1 College of Materials Science & Engineering, Chongqing University, Chongqing 400045
2 Chongqing Chuanyi Metallic Functional Materials Co., Ltd., Chongqing 400702
下载:  全 文 ( PDF ) ( 1979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍铬改良型精密电阻合金是在Ni80Cr20电热合金基础上经过成分优化发展而来,目前常用的有Ni-Cr-Al-Fe和Ni-Cr-Al-Cu两个系列。该类合金具有高电阻率(ρ)、低电阻温度系数(TCR)和低对铜热电势等优异的电学性能,是制作高性能电阻元件的关键材料,受到了我国研究者的高度重视,但关于其基础研究的报道很少,制约了相关生产技术的进步。
   Al和Fe是Ni-Cr-Al-Fe系精密电阻合金中两种主要的合金元素,本研究通过合理的成分设计,研究了这两种元素对合金力学和电学性能的影响规律;同时该合金通常是在固溶和时效处理状态下使用,因此也设计了相应的热处理工艺,以考察时效处理对合金性能的作用规律。本工作分析了不同合金的晶粒尺寸,测试了合金的硬度和拉伸性能,并利用电阻测试仪、电阻温度系数测试仪和热电偶检定炉等检测了合金的电学性能。结果表明,在本研究设计的成分范围内,合金的晶粒尺寸随Al含量的增加而减小,但其对Fe含量的变化不敏感。在力学性能方面,合金的硬度和强度随Al和Fe含量的增加而提高,塑性相应下降,但Fe的作用较Al弱;经时效处理后,合金的强度和硬度上升,但塑性无明显变化。在电学性能方面,Al和Fe含量的增加均使合金电阻率升高,但二者对电阻温度系数的影响规律相反,TCR随Al含量的增加而减小、随Fe含量的增加而增大,并且在一定条件下会出现负值,因此通过合理调整Al和Fe含量的比例,有望得到接近于0的TCR;合金的对铜热电势随Al含量的增加而先降后增,在Al含量为3.2%~3.7%(质量分数)范围内出现最小值,但其对Fe含量不敏感;经时效处理后,合金的电学性能得到明显改善,即电阻率升高、TCR下降、对铜热电势下降。总体而言,Al含量对该精密电阻合金力学和电学性能均有显著影响,而Fe的作用主要体现在对电阻温度系数的调控方面。
   本研究结合晶粒尺寸、微观结构在热处理过程中的变化以及元素的核外电子分布等特点,讨论了成分和热处理导致合金力学和电学性能改变的内在机理,该研究结果对于Ni-Cr-Al-Fe精密电阻合金的成分、工艺和性能的优化具有重要的实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王勇
杨贤军
喻文新
黄树东
徐永红
吴达
乔丽英
关键词:  精密电阻合金  成分  时效  力学性能  电学性能    
Abstract: Nickel-chromium based precise resistance alloys, including primarily Ni-Cr-Al-Fe and Ni-Cr-Al-Cu alloys, are developed from the electrothermal alloy Ni80Cr20 by adding some other alloy elements. Because of their excellent electrical properties, such as high resistivity, low temperature coefficient of resistivity (TCR) and copper thermoelectric potential, these alloys are the key of high-performance resistance elements and attract much attention. However, fundamental researches on the precise resistance alloys are seldom reported, restricting the development of the manufacturing technology of these alloys.
In this paper, a series of alloys with different compositions were designed and manufactured so as to investigate the effects of the concentration of Al and Fe, which were the main alloying elements in Ni-Cr-Al-Fe precise resistance alloy on the mechanical and electrical properties. Also, solid solution and aging treatment processes were conducted in order to explore the influence of heat treatment on the properties because the preci-sion resistance alloys were usually used after aging treatment. Grain sizes, hardness and tensile properties of different alloys were measured. The electrical properties of alloy were tested by using resistance tester, TCR tester and thermocouple calibration furnace respectively. It was found that the grain size decreased with the increase of Al but it was not sensitive to the content of Fe, in the concentration range of this work. As for the mechanical properties, the strength and hardness of the alloy increased with the increase of Al and Fe content, and the plasticity decreased correspondingly. But the effect of Fe was much less than Al. After aging treatment, the strength and hardness increased simultaneously, but the plasticity almost had no change. In terms of electrical properties, as the Al and Fe content increased, the resistivity increased too. These two elements affected the TCR conversely, i. e., the TCR declined with the increase of Al but rose with the increase of Fe. Furthermore, negative TCR values were attained under some conditions. Hence, it was expectable to get TCR values close to zero by adjusting the ratio of Al and Fe properly. With the increase of Al content, the copper thermoelectric potential decreased first and then increased, and the minimum appeared at 3.2wt%—3.7wt% Al. However, it was not sensitive to Fe content. Aging treatment affected the electric properties favorably, that is, it increased the resistivity but decreased TCR and copper thermoelectric potential. Generally, the content of Al affected the electrical and mechanical properties obviously, while the primary effect of Fe content was on TCR.
In this paper, the mechanism of the evolution of mechanical and electrical properties of precise resistance alloys with composition and heat treatment was discussed from the aspect of grain size, microstructure variation during heat treatment and extranuclear electron distribution of different elements. These results was hopeful to provide some practical references for the optimization of the composition, process and performance of Ni-Cr-Al-Fe precise resistance alloy.
Key words:  precise resistance alloy    composition    aging    mechanical properties    electrical properties
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TG132.2  
基金资助: 国家重点研发计划资助课题(2016YFB0402603)
作者简介:  王勇,1968年2月生,博士,出站博士后,重庆大学材料科学与工程学院副教授,兼任全国电工合金标准化技术委员会委员。长期从事电工合金、生物医用金属材料、相变理论及粉末冶金等方面的教学和科研工作。参加过多项科技部、自然科学基金委、重庆市科技局等各级纵向科研项目和各类横向科研项目的研究,目前正在承担“十三、五”国家重点研发计划项目(2016YFB0402600)和重庆市技术创新与应用示范专项产业类重点研发项目(cstc2018jszx-cyzdX0090)的研究工作。获得省部级科技二等奖2项、三等奖1项,发表学术论文 70 余篇,获权发明专利10余项。
引用本文:    
王勇, 杨贤军, 喻文新, 黄树东, 徐永红, 吴达, 乔丽英. 化学成分及时效处理对镍铬铝铁精密电阻合金性能的影响[J]. 材料导报, 2019, 33(24): 4131-4135.
WANG Yong, YANG Xianjun, YU Wenxin, HUANG Shudong, XU Yonghong, WU Da, QIAO Liying. Effect of Chemical Composition and Aging Treatment on Properties of Ni-Cr-Al-Fe Precise Resistance Alloy. Materials Reports, 2019, 33(24): 4131-4135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100180  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4131
1 Kieffer T P, Peters K J. Strain, 2018, 54 (1), e12253.2 Yang X J, Wang Y, Xu Y H, et al. Process Automation Instrumentation, 2018, 39(6), 54(in Chinese).杨贤军, 王 勇, 徐永红, 等. 自动化仪表, 2018, 39(6), 54.3 Braudaway D W. IEEE Transactions on Instrumentation & Measurement, 1999, 48(5), 878.4 Pollock D D. Journal of Testing and Evaluation, 1983, 11(3), 225.5 Dudova N R, Valitov V A, Kaibyshev R O. Doklady Physics, 2009, 54 (2), 77.6 Kang J H, Ingendahl T, Appen J, et al. Materials Science & Engineering A, 2014, 614(9), 122.7 Marucco A. Materials Science and Engineering A, 1995,194, 225.8 Pfeiler W. Acta Metallurgica, 1988, 36 (9), 24179 Verma A, Singh J B, Sundararaman M, et al. Metallurgical and Mate-rials Transactions A, 2012, 43(9), 307810 Wang X P, Zhao T X, Ji H, et al.Acta Physica Sinica, 1994, 43(2), 297(in Chinese).王晓平, 赵特秀, 季航, 等. 物理学报, 1994, 43(2), 297.11 Kakeshita T, Fukuda T, Tetsukawa H, et al. Japanese Journal of Applied Physics, 1998, 37(5A), 2535.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[5] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[6] 胡贵生, 章超, 钱晨阳, 文建新. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2): 233-238.
[7] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[8] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[9] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[10] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[11] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[12] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[13] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[14] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[15] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed