Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6132-6137    https://doi.org/10.11896/cldb.18120131
  金属与金属基复合材料 |
时效温度对Cu沉淀强化超高强海工钢力学性能的影响
李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航
钢铁研究总院工程用钢研究所,北京 100081
Effect of Aging Temperature on Mechanical Properties of Ultra High Strength Marine Engineering Steel Strengthened by Cu Precipitation
LI Zhentuan, CHAI Feng, LUO Xiaobing, ZHANG Zhengyan, YANG Caifu, SU Hang
Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 4433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Thermo-Calc软件、SEM和HRTEM等分析技术研究了时效温度对低碳超高强海工钢中Cu的析出行为及其对力学性能的影响。结果表明,400~550℃时效,由于Cu的时效沉淀析出,Ni-Cr-Mo-Cu钢的时效硬度显著高于Ni-Cr-Mo钢,最高时效峰值硬度达到386HV。525℃时效,Cu粒子具有较低的粗化速率,Cu粒子析出的平均半径为5.2nm,强化机制为切过机制,产生的强化增量约为100MPa。时效温度升高至550~575℃,Cu粒子粗化,强化机制转变为绕过机制,强化增量小于50MPa。Ni-Cr-Mo-Cu钢525℃时效可以获得良好的强韧性,屈服强度达到1120MPa,-80℃低温V型冲击功为76J,与Ni-Cr-Mo钢相比,添加Cu使其屈服强度、-80℃冲击功分别提高9%和15%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振团
柴锋
罗小兵
张正延
杨才福
苏航
关键词:  时效温度  超高强度钢  低碳  Cu沉淀强化  粗化速率    
Abstract: Effect of aging temperature on copper-precipitation behavior and mechanical properties of low carbon ultra-high strength marine engineering steel was investigated by means of Thermo-Calc software, SEM and HRTEM. The results showed that aging hardness of Ni-Cr-Mo-Cu steel was significantly higher than Ni-Cr-Mo steel between 400 ℃ and 550 ℃ aging, and the highest aging peak hardness was 386HV. Cu particles exhibited a lower coarsening rate at 525 ℃ aging, the average precipitation radius of Cu particles was 5.2 nm, and the Cu precipitates yielded shear strengthening mechanism with a strength increment of 100 MPa. When aging temperature was 550 ℃ to 575 ℃, the strengthening mechanism transformed into by-pass because of the coarsening of Cu particles, as a result, the strength increment was less than 50 MPa. The Ni-Cr-Mo-Cu steel could achieve better match of strength and toughness at 525 ℃ aging, the yield strength reached 1 120 MPa and the -80 ℃ low-temperature V-notch impact energy was 76 J, which was 9% and 15% higher than the value obtained in Ni-Cr-Mo steel.
Key words:  aging temperature    ultra-high strength steel    low carbon    Cu precipitation strengthening    roughening rate
                    发布日期:  2020-03-12
ZTFLH:  TG314  
基金资助: 国家重点基础研究发展计划(2017YFB0703002)
作者简介:  李振团,2015年6月毕业于内蒙古科技大学,获得工学硕士学位。现为钢铁研究总院博士研究生,在柴锋教授的指导下进行研究。目前主要研究领域为超高强海工用钢中纳米粒子的析出行为及其性能调控,已发表论文5篇;柴锋,钢铁研究总院正高级工程师, 硕士研究生导师,2008年毕业于上海交通大学,获博士学位。其主要研究领域为高性能海工用钢品种研发,主持和完成科研项目6项,包括国2项863计划、2项国际合作项目、2项工信部高技术船舶科研项目等。工作期间共撰写和发表论文50余篇,获得授权专利共计10项,参与撰写专著2本,获冶金科学技术一等奖一项,三等奖一项,中国船舶重工集团科学技术二等奖1项,并荣获2016年中国金属学会“冶金先进科技工作者”称号。
引用本文:    
李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
LI Zhentuan, CHAI Feng, LUO Xiaobing, ZHANG Zhengyan, YANG Caifu, SU Hang. Effect of Aging Temperature on Mechanical Properties of Ultra High Strength Marine Engineering Steel Strengthened by Cu Precipitation. Materials Reports, 2020, 34(6): 6132-6137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120131  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6132
1 Xu S S, Zhao Y, Chen D, et al.International Journal of Plasticity, 2019, 113,99.
2 Bandyopadhyay P S, Kundu S, Ghosh S K, et al. Metallurgical and Materials Transactions A, 2011, 42 (4), 1051.
3 Nagao A, Ito T, Obinata T. JFE Technical Report, 2008, 11 (11), 13.
4 Jain D, Isheim D, Hunter A H, et al. Metallurgical and Materials Tran-sactions A, 2016, 47 (8),3860.
5 Jain D, Isheim D, Seidman D N. Metallurgical and Materials Transactions A, 2017, 48 (7),3205.
6 Mulholland M D, Seidman D N. Acta Materialia, 2011, 59 (5),1881.
7 Mulholland M D, Seidman D N. Scripta Materialia, 2009, 60 (11), 992.
8 Yang Caifu, Su Hang, Li Li, et al. The Chinese Journal of Nonferrous Metals, 2004, 14 (F01),211 (in Chinese).
杨才福, 苏航, 李丽, 等. 中国有色金属学报, 2004, 14 (F01),211.
9 Othen P J, Jenkins M L. Philosophical Magazine A, 1994, 70 (1), 1.
10 Monzen R, Iguchi M,Jenkins M L. Philosophical Magazine A, 2000, 80 (3),137.
11 Nakashima K, Futamura Y, Tsuchiyama T, et al. ISIJ International, 2002, 42 (12),1541.
12 Liu Q D. Atom probe tomography study on copper precipitation strengthening and reverse austenite toughening in HSLA ferritic steel. PhD Thesis, Shanghai Jiao Tong University, 2012 (in Chinese).
刘庆冬. HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子层析技术研究. 博士学位论文, 上海交通大学, 2012.
13 Mujahid M, Lis A K, Garcia C I, et al. Trans Tech Publications, 1993, 84, 209.
14 Feng Liu, Zhou Bangxin, Peng Jianchao, et al. Journal of materials Engineering, 2015, 43 (7),80 (in Chinese).
冯柳,周邦新,彭剑超, 等. 材料工程, 2015, 43 (7), 80.
15 Jie Hui, Wang Wei. Journal of Synthetic Crystals, 2017, 46 (3),531 (in Chinese).
解辉,王伟. 人工晶体学报,2017, 46 (3), 531.
16 Fine M E, Isheim D. Scripta Materialia, 2005, 53 (1), 115.
17 Yong Q L. Secondary phase in steels, Metallurgical Industry Press, China, 2006 (in Chinese).
雍岐龙. 钢铁材料中的第二相,冶金工业出版社, 2006.
18 Russell K C, Brown L M. Acta Metallurgica, 1972, 20 (7),969.
19 Büttner N, Fusenig K D, Nembach E. Acta Metallurgica, 1987, 35 (4),845.
20 Wang J S, Mulholland M D, Olson G B, et al. Acta Materialia, 2013, 61 (13),4939.
21 Lifshitz I M, Slyozov V V. Journal of Physics and Chemistry of Solids, 1961, 19 (1-2),35.
22 Wagner C. Corrosion Science, 1965, 5 (11),751.
23 Christien F, Barbu A. Journal of Nuclear Materials, 2004, 324 (2-3),90.
24 Monzen R, Takada K, Watanabe C.ISIJ International, 2004, 44 (2), 442.
25 Monzen R, Takada K, Matsuda K. Zeitschrift für Metallkunde, 2003, 94 (11),1241.
26 Kapoor M, Isheim D, Ghosh G, et al. Acta Materialia, 2014, 73,56.
27 Kolli R P, Seidman D N. Acta Materialia, 2008, 56 (9), 2073.
[1] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[2] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[3] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[4] 周勇, 冯雪楠, 毕宗岳, 田小江, 王雷, 李博锋. 低碳微合金管材TIG焊热影响区软化成因分析[J]. 材料导报, 2019, 33(z1): 428-431.
[5] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[6] 佟莹, 高林, 张开开, 权国政, 王玄, 周杰. 超高强度钢板的梯度控温相变强化模式[J]. 材料导报, 2019, 33(20): 3494-3501.
[7] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[8] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[9] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[10] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[11] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[12] 王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed