Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 237-242    https://doi.org/10.11896/j.issn.1005-023X.2018.02.016
  物理   材料研究 |材料 |
微合金元素Nb对低碳铸钢强度和冲击韧性的影响
傅定发,冷宇,高文理
湖南大学材料科学与工程学院, 长沙 410082
Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels
Dingfa FU,Yu LENG,Wenli GAO
College of Materials Science and Engineering, Hunan University, Changsha 410082
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用中频炉冶炼制备不同Nb含量的微合金低碳铸钢,用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、液压万能强度试验机、半自动冲击试验机等手段研究了Nb微合金化对低碳铸钢显微组织、强度和冲击韧性的影响。结果表明,添加合适的微合金元素Nb可以使低碳铸钢的晶粒尺寸减小20.8%~34.6%,同时促进细小NbC析出相的形成,能有效提高低碳铸钢的强度和冲击韧性,晶粒细化和析出强化为其主要的强韧化机制。其中,含Nb量为0.044%的微合金铸钢屈服强度为350 MPa,抗拉强度为520 MPa,室温冲击功为119.7 J。与普通低碳铸钢相比,其塑性基本保持不变,但屈服强度、抗拉强度和室温冲击功分别提高了20.7%、7.2%和25.6%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅定发
冷宇
高文理
关键词:  低碳铸钢  Nb合金化  微观组织  强度  冲击韧性    
Abstract: 

Microalloyed cast steels with different amount of niobium (Nb) were produced by medium frequency induction furnace. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to investigate the effect of microalloying element Nb on microstructure, strength and toughness of low carbon cast steels. The results indicated that the grain size of low carbon cast steels were refined by 20.8%—34.6% and fine NbC particles were formed by niobium addition. Meanwhile, yield strength (YS), ultimate tensile strength (UTS) and room temperature toughness of the microalloyed steels were improved significantly. Grain refining and precipitation were proved to be the main strengthening mechanisms. When the content of Nb was 0.044 wt%, the YS, UTS and impact energy of the microalloyed steel were 350 MPa, 520 MPa and 119.7 J, respectively. They were improved by 20.7%, 7.2% and 25.6% with retained ductility, respectively, as compared to Nb-free steel.

Key words:  low carbon cast steel    Nb microalloying    microstructure    strength    toughness
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG142.1+3  
基金资助: 国家自然科学基金(51271076;51474101)
引用本文:    
傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels. Materials Reports, 2018, 32(2): 237-242.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.016  或          https://www.mater-rep.com/CN/Y2018/V32/I2/237
Sample C Si Mn P S Al Nb
1 0.18 0.49 0.83 0.021 0.005 0.07
2 0.15 0.55 0.90 0.023 0.008 0.06 0.016
3 0.18 0.42 0.94 0.020 0.006 0.03 0.044
4 0.15 0.46 0.76 0.018 0.003 0.05 0.072
表1  实验铸钢的化学成分(质量分数/%)
图1  不同Nb含量的实验铸钢900 ℃正火+550 ℃回火后的金相组织:(a)0%,(b)0.016%,(c)0.044%,(d)0.072%
图2  不同Nb含量的实验铸钢晶粒形貌和尺寸EBSD分析:(a)0%, (b)0.016%, (c)0.044%, (d)0.072%
图3  不同Nb含量的实验铸钢的平均晶粒尺寸
图4  Nb微合金化铸钢(含Nb量为0.044%) 中析出相TEM分析
图5  实验铸钢中Nb元素的含量与强度/塑性的关系
图6  实验铸钢中Nb元素的含量与室温冲击韧性的关系
1 Jingwei Zhao , Zhengyi Jiang. Development of new microalloyed steel by alloying with tungsten[J].Applied Mechanics and Materials, 2015, 716- 717:48.
2 Gladman T . The physical metallurgy of microalloyed steels[M]. Cambridge: Cambridge University Press, 2002: 1.
3 Liang Guoli . Analysis on tempering process of oil tank steel with low carbon and microalloy[J]. Materials Review B:Research Papers, 2015,29(9):77(in Chinese).
4 梁国俐 . 低碳微合金石油储罐钢回火工艺研究[J]. 材料导报:研究篇, 2015,29(9):77.
5 Li Jie, Wang Guoliang, Xia Yunjin , et al. Effect of Nb and V Micro-alloying on the precipitation phases in Q345E for wind-electron flange[J]. Materials Review B:Research Papers, 2014,28(7):104(in Chinese).
6 李杰, 王国梁, 夏云进 , 等. 铌钒微合金化对风电法兰用Q345E钢析出相的影响[J]. 材料导报:研究篇, 2014,28(7):104.
7 5 Ma Jie, Sun Fangce, Chen Mulan, et al. Effects of microalloying elements on the structure and properties of low-alloy cast steel[J].Foundry, 1997(1):25(in Chinese).
8 马捷, 孙方策, 陈木兰 , 等. 微合金化元素对低合金铸钢组织和性能的影响[J].铸造, 1997(1):25.
9 Wei Shenghui . Effects on microstructures and mechanical properties of cast steel by micro-alloying[D]. Shijiazhuang: Hebei University of Science and Technology, 2009(in Chinese).
10 魏胜辉 . 微合金化对铸钢组织和力学性能的影响[D]. 石家庄:河北科技大学, 2009.
11 Najafi H, Rassizadehghani J, Norouzi S . Mechanical properties of as-cast microalloyed steels produced via investment casting[J]. Materials and Design, 2011,32(2):656.
12 Najafi H, Rassizadehghani J, Asgari S . As-cast mechanical properties of vanadium/niobium microalloyed steels[J]. Materials Science and Engineering A, 2008,486(s1-2):1.
13 9 Yang Zuohong, Chen Baichun. On the role of micro-alloying elements Nb, V, Ti in steel[J].Gansu Metallurgy, 2002(4):20(in Chinese).
14 杨作宏, 陈伯春 . 谈微合金元素Nb、V、Ti在钢中的作用[J].甘肃冶金, 2002(4):20.
15 Wang Zubin . Development of low-alloy and microalloy steels[J]. China Metallurgy, 1999,3(4):19(in Chinese).
16 王祖滨 . 低合金钢和微合金钢的发展[J]. 中国冶金, 1999,3(4):19.
17 Jingwei Zhao, Jeong Hun Lee, Yong Woo Kim , et al. Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment[J]. Materials Science and Engineering A, 2013,559(3):427.
18 12 Song Xiaoju, Zheng Jianhua, Luo Shixiong, et al. The behavior and effect of V, Ti, Nb, B, Re and other elements in microalloyed steels[J].CISC Technology, 2000(2):26(in Chinese).
19 宋晓菊, 郑建华, 骆世雄 , 等. V、Ti、Nb、B、Re等元素在微合金钢中的行为和作用[J].重钢技术, 2000(2):26.
20 Zhao Luyu . Application of trace rare earth element in cast steel[J]. Development and Application of Materials, 2003,18(3):43(in Chinese).
21 赵路遇 . 微量稀土元素在铸钢中的应用[J]. 材料开发与应用, 2003,18(3):43.
22 David Turnbull, Bernard Vonnegut . Nucleation catalysis[J]. Industrial and Engineering Chemistry, 1952,4(6):1292.
23 Xie Jingpei, Wang Wenyan, Wang Aiqin , et al. Effects of Nb and N in medium manganese austenitic steel[J]. Journal of Iron and Steel Research, 2002,14(1):38(in Chinese).
24 谢敬佩, 王文焱, 王爱琴 , 等. 铌、氮在中锰奥氏体钢中的作用[J]. 钢铁研究学报, 2002,14(1):38.
25 Hall E O . The deformation and ageing of mild steel: Ⅲ Discussion of results[J]. Proceedings of the Physical Society, 1951,643(9):747.
26 Petch N J . The cleavage strength of polycrystals[J]. Transactions of the Iron and Steel Institute of Japan, 1953,173(1):25.
27 Krauss G . Strengthening mechanisms in steels[M]. Encyclopedia of Materials Science and Technology, 2001: 8870.
28 Najafi H, Rassizadehghani J, Halvaaee A . Mechanical properties of as cast microalloyed steels containing V, Nb and Ti[J]. Materials Science and Technology, 2007,23(6):699.
29 Rassizadehghani J, Najafi H, Emamy M , et al. Mechanical properties of V-,Nb-,and Ti-bearing as-cast microalloyed steels[J]. Journal of Materials Science and Technology, 2007,23(6):779.
30 Leap M J, Wingert J C . The effects of grain-refining precipitates on the development of toughness in 4340 steel[J]. Metallurgical & Materials Transactions A, 1999,30(1):93.
[1] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[7] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[8] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[9] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[10] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[11] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[12] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[13] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[14] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[15] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed