Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 243-248    https://doi.org/10.11896/j.issn.1005-023X.2018.02.017
  物理   材料研究 |材料 |
固溶处理对GH3625合金板材组织及性能的影响
丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Solution Treatment on the Microstructure and Mechanical Properties of GH3625 Superalloy Sheet
Yutian DING,Bin MENG,Yubi GAO,Xin GAO,Zhengyi DOU,Yuanjun MA
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 5495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过OM、SEM、EDS能谱分析和万能拉伸试验机以及洛氏硬度计等手段研究了固溶处理对GH3625合金板材组织和力学性能的影响。结果表明:固溶处理后合金的晶粒基本上呈等轴状态,且内部存在大量退火孪晶;当固溶温度高于1 130 ℃时,合金中的碳化物几乎完全溶解到基体中;在8901 190 ℃固溶时,晶粒尺寸随温度的升高而增加,且晶粒长大激活能Qg为227.18 kJ/mol;在不同的固溶温度下,晶粒尺寸与GH3625合金的室温力学性能符合Hall-Petch关系,合金的强化机制主要为细晶强化;随着温度的升高,GH3625合金板材的断裂方式由脆性断裂逐渐演变为明显的韧性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
孟斌
高钰璧
高鑫
豆正义
马元俊
关键词:  GH3625合金板材  固溶处理  孪晶  晶粒尺寸  断裂    
Abstract: 

The influence of solution treatment on microstructure and mechanical properties of GH3625 alloy sheet were investigated by OM, SEM, EDS, universal testing machine and Rockwell hardness tester and other means. The results indicated that the grains were equiaxed and there were a large number of annealing twins after the solution treatment. As solution treatment temperature was more than 1 130 ℃, the carbides in alloy almost completely dissolve into the matrix. Grain size was prompted by temperature increasing in the range of 890 ℃ to 1 190 ℃, and the energy (Qg) of grain growth was 227.18 kJ/mol. At different solution temperature, the grain size and room-temperature mechanical properties of GH3625 alloy accord with Hall-Petch relation. The main strengthening mechanism was fine grained strengthening. With the increase of temperature, the fracture mode of GH3625 alloy sheet was changed from brittle fracture to ductile fracture.

Key words:  GH3625 superalloy sheet    solution treatment    twins    grain size    fracture
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG146.1 +5  
基金资助: 国家自然科学基金(51661019);甘肃省重大科技专项项目(145RTSA004)
引用本文:    
丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊. 固溶处理对GH3625合金板材组织及性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 243-248.
Yutian DING,Bin MENG,Yubi GAO,Xin GAO,Zhengyi DOU,Yuanjun MA. Effect of Solution Treatment on the Microstructure and Mechanical Properties of GH3625 Superalloy Sheet. Materials Reports, 2018, 32(2): 243-248.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.017  或          https://www.mater-rep.com/CN/Y2018/V32/I2/243
C Si Mn P S Cr Fe Mo V Cu Ni
0.047 2 0.283 0.203 <0.000 3 0.001 65 21.36 0.605 9.12 0.025 7 0.014 8 64.1
W Co Nb Al Ti Zr Sn B Mg Ta
0.000 96 0.018 8 3.74 0.213 0.246 0.002 55 0.003 65 <0.000 1 0.002 89 0.028 8
表1  实验材料的化学成分(质量分数/%)
图1  GH3625合金原始显微组织
图2  不同温度热处理后GH3625合金的组织
图3  不同固溶温度下GH3625合金板材的析出相分布情况
图4  固溶温度对晶粒尺寸的影响
图5  GH3625合金晶粒尺寸与固溶温度的关系
图6  固溶温度对力学性能的影响
图7  不同固溶处理温度下GH3625合金的Hall-Petch关系
图8  GH3625合金板材的原始断口形貌
图9  不同温度固溶处理后GH3625合金的断口形貌
1 1 冶军 . 美国镍基高温合金[M]. 北京: 科学出版社, 1978: 228.
2 2 黄乾尧, 李汉康, 陈国良 , 等. 高温合金[M]. 北京:冶金工业出社, 2000: 31.
3 3 Zhang H B. Inconel625 alloy progress abroad[J].Special Steel Technology, 2000(3):69(in Chinese).
4 张红斌 . 国外Inconel625合金的进展[J].特钢技术, 2000(3):69.
5 4 郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2008: 87.
6 Shankar V, Rao K B S, Mannan S L . Microstructure and mechanical properties of Inconel 625 superalloy[J]. Journal of Nuclear Mate-rials, 2001,288(2-3):222.
7 Floreen S, Fuchs G E, Yang W J . “The metallurgy of alloy 625” superalloys 718, 625 and various derivatives[M]. TMS,Warrendale,PA, 1994: 13.
8 Ou X Z, Yao L, Huang Y P . Influence of solution temperature on the microstructure and mechanical properties of UNS N06625 alloy[J]. Metallic Functional Materials, 2016,23(2):55(in Chinese).
9 欧新哲, 姚雷, 黄妍凭 . 固溶处理对UNS N06625合金组织和力学性能的影响[J]. 金属功能材料, 2016,23(2):55.
10 Peng C H, Chang H, Hu R , et al. Static recrystallization kinetics of Haynes230 superalloy[J]. Journal of Aeronautical Materials, 2011,31(2):8(in Chinese).
11 彭聪辉, 常辉, 胡锐 , 等. Haynes230高温合金的静态再结晶动力学[J]. 航空材料学报, 2011,31(2):8.
12 9 余永宁. 位错理论[M]. 北京: 北京钢铁学院出版社, 1984: 24.
13 Yang G, Sun L J, Zhang L N , et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009,21(2):39(in Chinese).
14 杨钢, 孙利军, 张丽娜 , 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009,21(2):39.
15 11 董建新. 镍基合金管材挤压及组织控制[M]. 北京: 冶金工业出版社, 2014.
16 Yang G, Wang C, Zhang L Y , et al. Recovery and recrystallization mechanism in austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2010,31(12):51(in Chinese).
17 杨钢, 王昌, 张凌义 , 等. 奥氏体不锈钢的回复与再结晶机制[J]. 材料热处理学报, 2010,31(12):51.
18 Xia S, Li H, Zhou B X , et al. Control and application of annealing twins in metallic materials: Grain boundary engineering[J]. Chinese Journal of Nature, 2010,32(2):94(in Chinese).
19 夏爽, 李慧, 周邦新 , 等. 金属材料中退火孪晶的控制及利用——晶界工程研究[J]. 自然杂志, 2010,32(2):94.
20 14 董建新. 高温合金GH4738及应用[M]. 北京: 冶金工业出版社, 2014: 16.
21 Feng H, Song Z G, Zheng W J , et al. Effect of solution treatment on microstructure and mechanical property of Inconel690[J]. Journal of Iron and Steel Research, 2009,21(3):46(in Chinese).
22 丰涵, 宋志刚, 郑文杰 , 等. 固溶处理对Inconel690合金组织和力学性能的影响[J]. 钢铁研究学报, 2009,21(3):46.
23 Kai J J, Yu G P, Tsai C H , et al. The effects of heat treatment on the chromium depletion, precipitate evolution and corrosion resis-tance of lnconel alloy 690[J]. Metallurgical Transactions A, 1989,20:2057.
24 17 毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994: 62.
25 Fang X D, Han D P, Li Y . Effect of heat treatment on microstructure and mechanical properties of GH625 alloy[J]. Hot Working Technology, 2013,42(8):204(in Chinses).
26 方旭东, 韩德培, 李阳 . 热处理对GH625合金热挤压管材组织及力学性能的影响[J]. 热加工工艺, 2013,42(8):204.
27 Sellars S M, Whiteman J A . Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979,13:198.
28 Anelli E . Application of mathematical modelling to hot rolling and controlled colling of wire rods and bars[J]. ISIJ Interational, 1992,32:440.
29 Guo Q M, Li H T, Li D F , et al. Hot extrusion moulding process and microstructure evolution of GH625 superalloy tubes[J]. Chinese Journal of Rare Metals, 2011,35(5):684(in Chinese).
30 郭青苗, 李海涛, 李德富 , 等. GH625合金管材热挤压成形工艺及组织演变的研究[J]. 稀有金属, 2011,35(5):684.
31 22 杨德庄. 位错与金属强化机制[M]. 哈尔滨: 哈尔滨工业大学出版社, 1991.
32 Zhong Q P, Zhao Z H, Zhang Z . Development of “Fractography” and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005,27(3):358(in Chinese).
33 钟群鹏, 赵子华, 张峥 . 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005,27(3):358.
34 4 Wu D, Tian L X, Ma C L , et al. Tensile fracture behavior of Ni-based single crystal superalloy[J]. Materials Review B:Research Papers, 2016,30(12):76(in Chinese).
35 武丹, 田礼熙, 马朝利 , 等. 镍基单晶高温合金的拉伸断裂行为[J]. 材料导报:研究篇, 2016,30(12):76.
[1] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[4] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[5] 周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[8] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[9] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[10] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[11] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[12] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[13] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[14] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[15] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed