Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23030172-8    https://doi.org/10.11896/cldb.23030172
  高分子与聚合物基复合材料 |
改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析
赵胜前1, 游庆龙1,*, 李京洲2, 尹杰1, 黄之懿1
1 长安大学公路学院,西安 710064
2 天津市政工程设计研究总院有限公司,天津 300000
Study of Toughening and Crack Resistance Effect of Modified Polyester Fiber on Airport Cement Concrete
ZHAO Shengqian1, YOU Qinglong1,*, LI Jingzhou2, YIN Jie1, HUANG Zhiyi1
1 School of Highway, Chang'an University, Xi'an 710064, China
2 Tianjin Municipal Engineering Design and Research Institute, Tianjin 300000, China
下载:  全 文 ( PDF ) ( 15493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为增强机场水泥混凝土的韧性,提升道面结构的抗开裂能力,制备了聚酯纤维(FC)、聚乙烯醇纤维(PVA)和聚丙烯粗纤维(PP)混凝土。以砂率、FC纤维掺量和减水剂掺量为影响因素,28 d抗折强度为响应值,采用响应面法确定了FC纤维混凝土的最佳配比。采用三点弯曲韧性试验和三点弯曲断裂试验,分析了纤维的增韧阻裂机理。结果表明:砂率、FC纤维掺量和减水剂掺量之间存在交互作用,三者对混凝土28 d抗折强度的影响程度排序为FC纤维掺量>减水剂掺量>砂率,最佳配比为砂率34%、FC纤维掺量1.4 kg/m3、减水剂掺量2%。三种纤维P-δ曲线拐点处的荷载峰值和挠度显著提高,拐点尖锐程度下降。相较于素混凝土,FC、PVA和PP纤维混凝土的断裂韧性分别提高了125.8%、118.4%和87.1%,起裂韧度分别提升了38.7%、33.9%和25.2%,断裂韧度分别提升了87.1%、73.2%和55.6%。此外,FC、PVA和PP纤维混凝土开裂过程中所需的断裂能分别提升了216.2%、193.2%和162.9%。结合能量平衡理论,纤维通过能量传递的方式在混凝土中起到增韧阻裂作用,FC纤维的增韧阻裂效果相对显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵胜前
游庆龙
李京洲
尹杰
黄之懿
关键词:  水泥混凝土道面  纤维混凝土  改性聚酯纤维  响应面法  弯曲韧性  断裂性能    
Abstract: In order to enhance the toughness and fracture performance of airport cement concrete, fiber reinforced concrete was prepared by using modified polyester fiber (FC), polyvinyl alcohol fiber (PVA) and polypropylene crude fiber (PP) as reinforcing materials. The optimum mixture ratio of FC fiber reinforced concrete was determined by response surface method with sand ratio, amount of FC fiber and water reducer as the influencing factors and 28 d flexural strength as the response value. The flexural toughness and fracture performance of three kinds of fiber reinforced concrete were studied by three-point bending toughness test and three-point bending fracture test, and the mechanism of fiber toughening and crack resistance was analyzed. The results show that there is an interaction between three factors: sand ratio, FC fiber content and water reducer content. The degree of influence of the three factors on the 28 d flexural strength of FC fiber concrete is ranked as: FC fiber content > water reducer content > sand ratio. The optimum mixture ratio of FC fiber concrete is : sand ratio is 34%, FC fiber content is 1.4 kg/m3, water reducer content is 2%. The peak load and deflection at the inflection points of the P-δ curves of the three fibers were significantly higher, and the sharpness of the inflection points decreased. Compared to plain concrete, the fracture toughness of FC fiber, PVA fiber and PP fiber concrete increased by 125.8%、118.4% and 87.1%, respectively, the starting toughness increased by 38.7%、33.9% and 25.2%, respectively, the fracture toughness increased by 87.1%、73.2% and 55.6%, respectively, and the fracture energy increased by 216.2%、193.2% and 162.9%, respectively. Combined with the energy balance theory analysis, the fibers play a role in toughening and fracture resistance in concrete by means of energy transfer. All three kinds of fibers can improve the toughness and fracture properties of concrete, and FC fibers have a relatively significant effect on the toughness and fracture property enhancement of concrete.
Key words:  cement concrete pavement    fiber reinforced concrete    modified polyester fiber    response surface method    flexural toughness    fracture properties
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308064);首都机场集团公司科技项目(XJC[2019]-KY-033)
通讯作者:  *游庆龙,长安大学公路学院副教授、硕士研究生导师。2005年长沙理工大学道路与铁道工程专业本科毕业,2008年长安大学道路与铁道工程专业硕士毕业,2011年同济大学道路与机场工程专业博士毕业后到长安大学工作至今。目前主要从事道路材料、机场道面结构力学行为等方面的研究工作。先后主持国家级或省部级课题近20项,发表论文40余篇,包括Pavement Engineering、Construction and Building Materials、《交通运输工程学报》《土木工程学报》等。youqinglong0730@163.com   
作者简介:  赵胜前,2019年7月于烟台大学获得工学学士学位。现为长安大学公路学院博士研究生,在游庆龙、王旭昊教授的指导下进行研究。目前主要研究领域为道路材料及路面力学行为。
引用本文:    
赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
ZHAO Shengqian, YOU Qinglong, LI Jingzhou, YIN Jie, HUANG Zhiyi. Study of Toughening and Crack Resistance Effect of Modified Polyester Fiber on Airport Cement Concrete. Materials Reports, 2024, 38(13): 23030172-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030172  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23030172
1 Li C X, Nie J, Shi J K, et al. Journal of Civil and Environmental Engineering, 2019, 41(2), 147 (in Chinese).
李传习, 聂洁, 石家宽, 等. 土木与环境工程学报(中英文), 2019, 41(2), 147.
2 Lu Z Q, Yang Y R, Xun Y. Journal of Textile Research, 2021, 42(4), 177 (in Chinese).
陆振乾, 杨雅茹, 荀勇. 纺织学报, 2021, 42(4), 177.
3 Giaccio G, Tobes J M, Zerbino R. Cement and Concrete Composites, 2008, 30(4), 297.
4 Gao D Y, Zhao L P, Feng H, et al. Journal of Building Materials, 2014, 17(5), 783 (in Chinese).
高丹盈, 赵亮平, 冯虎, 等. 建筑材料学报, 2014, 17(5), 783.
5 Deng Z C, Wang H, Liu Y. Journal of Architecture and Civil Engineering, 2017, 34(2), 111 (in Chinese).
邓宗才, 王辉, 刘岩. 建筑科学与工程学报, 2017, 34(2), 111.
6 Zhang G T, Tian X H, Li B Y, et al. Materials Reports, 2018, 32(14), 2396 (in Chinese).
张广泰, 田虎学, 李宝元, 等. 材料导报, 2018, 32(14), 2396.
7 Si W, Cao M, Li L. Construction and Building Materials, 2020, 265, 120347.
8 Li V C. International Journal of Concrete Structuresand Materials, 2012, 6(3), 135.
9 Ma Y H, Ma H X, Guan X, et al. Journal of Highway and Transportation Research and Development, 2019, 36(12), 37 (in Chinese).
马银华, 马海啸, 官馨, 等. 公路交通科技, 2019, 36(12), 37.
10 Mohammadhosseini H, Abdul-Awal A A M, Mohd-Yatim J B. Construction and Building Materials, 2017, 143, 147.
11 Hang Z Y, Li C W, Liu Y Q. Materials Reports, 2014, 28(20), 111 (in Chinese).
黄政宇, 李操旺, 刘永强. 材料导报, 2014, 28(20), 111.
12 Wang Y C, Hou M J, Yu J T, et al. Materials Reports, 2018, 32(20), 3535 (in Chinese).
王义超, 侯梦君, 余江滔, 等. 材料导报, 2018, 32(20), 3535.
13 Weng X Z. Journal of Building Materials, 2010, 13(6), 749 (in Chinese).
翁兴中. 建筑材料学报, 2010, 13(6), 749.
14 Weng X Z, Cai L C, Liu G, et al. Highway, 2008(8), 221 (in Chinese).
翁兴中, 蔡良才, 刘钢, 等. 公路, 2008(8), 221.
15 Chen Y, Cen G P, Cui Y H. Construction and Building Materials, 2018, 184, 34.
16 Guo J J, Wang K, Qi C G. Journal of Marine Science and Engineering, 2021, 9(3), 251.
17 Xu L, Lai Y, Ma D X, et al. Materials, 2022, 15(21), 7528.
18 Ma G Q, Cen G P, Wang S T, et al. Highway, 2007(7), 182 (in Chinese).
马国强, 岑国平, 王硕太, 等. 公路, 2007(7), 182.
19 Chen J Q, Ji H G, Liu J H, et al. Chinese Journal of Engineering, 2016, 38(11), 1603 (in Chinese).
陈建强, 纪洪广, 刘娟红, 等. 工程科学学报, 2016, 38(11), 1603.
20 Wu H X, Wu Y G, Li W Z. Journal of Shenzhen University Science and Encineering, 2020, 37(2), 173(in Chinese).
吴豪祥, 吴永根, 李文哲. 深圳大学学报理工版, 2020, 37(2), 173.
21 Hou Y Q, Yin S H, Cao Y, et al. Materials Reports, 2020, 34(14), 14063 (in Chinese).
侯永强, 尹升华, 曹永, 等. 材料导报, 2020, 34(14), 14063.
22 Banthia N, Gupta R. Materials & Structures, 2004, 37(10), 707.
23 Wu Z M, Xv S L, Ding Y N, et al. Strategic Study of CAE, 2001, 3(4), 76 (in Chinese).
吴智敏, 徐世娘, 丁一宁, 等. 中国工程科学, 2001, 3(4), 76.
24 Wu K Y, Luo S R, Zheng J L. Engineering Mechanics, 2022, 39(3), 147 (in Chinese).
吴恺云, 罗素蓉, 郑建岚. 工程力学, 2022, 39(3), 147.
25 Ghasemi M, Ghasemi M R, Mousavi S R. Construction and Building Materials, 2019, 201, 447.
26 Ma G Q, Cen G P, Wang S T, et al. Concrete, 2007(8), 47 (in Chinese).
马国强, 岑国平, 王硕太, 等. 混凝土, 2007(8), 47.
[1] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[2] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[3] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[4] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[5] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[6] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[7] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[8] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[9] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[10] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[11] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[12] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[13] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[14] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[15] 马衍轩, 于霞, 徐亚茜, 李梦瑶, 赵飞, 张鹏, 彭帅. 智能纤维混凝土的力场损伤响应、监测与修复研究进展[J]. 材料导报, 2021, 35(19): 19081-19090.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed