Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21030317-7    https://doi.org/10.11896/cldb.21030317
  无机非金属及其复合材料 |
西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究
张秉宗1, 贡力1,2,*, 杜强业1, 梁颖1, 宫雪磊1, 杜秀萍3
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学调水工程及输水安全研究所,兰州 730070
3 保定市水利水电勘测设计院,河北 保定 071000
Experimental Investigation on Durability Damage of Polypropylene Fiber Reinforced Concrete in Saline and Dry Cold Region of Northwest China
ZHANG Bingzong1, GONG Li1,2,*, DU Qiangye1, LIANG Ying1, GONG Xuelei1, DU Xiuping3
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 Institute of Water Diversion Engineering and Water Security, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Baoding Survey and Design Institute of Water Conservancy and Hydro Power, Baoding 071000, Hebei, China
下载:  全 文 ( PDF ) ( 10959KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 西北盐渍干寒地区的盐胀、溶陷和腐蚀等工程病害严重影响混凝土正常使用。针对水工混凝土耐久性突出问题,以引大入秦工程为例,在现场取样基础上对混凝土残渣进行XRD分析确定侵蚀产物;结合混凝土侵蚀机理,设计室内劣化加速试验,利用核磁共振技术,从细观角度分析混凝土内部孔隙发展状况;选取混凝土相对动弹性模量、抗压强度损失率、质量损失率等宏观指标,结合SEM微观图像,探究聚丙烯纤维混凝土(PFRC)的耐久性损伤过程规律及特征。研究表明:聚丙烯纤维能够增加混凝土在复盐溶液中的循环次数,有效减少脱落,试验停止时,掺量为0.9 kg/m3的PFRC比普通混凝土质量损失减小3.61%;从细观层面看,聚丙烯纤维对浇筑完成后的混凝土微观孔隙结构稍有改善,但不明显;在混凝土“加速劣化”阶段,聚丙烯纤维能有效抑制混凝土中毛细孔和非毛细孔的增多;从微观形貌看,混凝土内部孔隙处生成的腐蚀产物是裂缝发展的主因,聚丙烯纤维不能阻止钙矾石、石膏等腐蚀产物生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张秉宗
贡力
杜强业
梁颖
宫雪磊
杜秀萍
关键词:  聚丙烯纤维混凝土  盐渍土环境  冻融循环  耦合加速试验  耐久性损伤  微观结构    
Abstract: The normal use of concrete is severely affected by engineering diseases such as salt swelling, melt sinking and corrosion in a certain environment of saltness-dryness-coldness in the northwest of China. Datong River-Qingwangchuan Water Diversion Project was selected as a research scope in order to study the outstanding problems of concrete durability. On the basis of collecting concrete residue samples within the research scope, the concrete residue was analyzed by XRD to determine the corrosion product. At the same time, an indoor deterioration accelerated test was designed based on the corrosion mechanism of concrete to analyze the propagation of internal pores in concrete from a meso-level perspective by using nuclear magnetic resonance technology. Combining with SEM observations, durability indicators such as relative dynamic elastic modulus, compressive properties and the mass loss rate were selected to explore the law and characteristics of the durability damage process of polypropylene fiber reinforced concrete (PFRC). The results show that polypropylene fiber can increase the number of cycles of concrete in the compound salt solution and effectively reduce shedding. When the test is stopped, the mass loss of PFRC with a dosage of 0.9 kg/m3 is reduced by 3.61% compared with that of ordinary concrete. From the meso-level, polypropylene fiber slightly improves the microscopic pore structure of concrete after pouring. In the ‘accelerated deterioration' stage of concrete, polypropylene fiber can effectively inhibit the increase of pores and non-capillary pores in concrete. From the micro-level, the corrosion products generated in the internal pores of concrete are the main reason of the propagation of cracks; polypropylene fiber cannot prevent the formation of corrosion products such as ettringite and gypsum.
Key words:  polypropylene fiber reinforced concrete    saline soil environment    freeze-thaw cycle    coupled accelerated test    durability damage    microstructure
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51969011);甘肃省科技计划资助(20JR10RA274;20JR2RA002;21JR7RA301); 甘肃省教育厅:优秀研究生“创新之星”项目(2021CXZX-640)
通讯作者:  *gongl@mail.lzjtu.cn   
作者简介:  张秉宗,2017年6月毕业于河海大学,获得工学学士学位。现为兰州交通大学土木工程学院硕士研究生,在贡力教授的指导下主要从事水工混凝土结构损伤和开裂机理等研究。
贡力,兰州交通大学教授、博士研究生导师。2014年在兰州交通大学获得岩土工程专业工学博士学位,现任兰州交通大学副校长,主要从事长距离输水工程结构性能理论及应用、输水工程材料耐久性等领域研究。已发表学术论文80余篇,出版专著 8 部。
引用本文:    
张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
ZHANG Bingzong, GONG Li, DU Qiangye, LIANG Ying, GONG Xuelei, DU Xiuping. Experimental Investigation on Durability Damage of Polypropylene Fiber Reinforced Concrete in Saline and Dry Cold Region of Northwest China. Materials Reports, 2022, 36(17): 21030317-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030317  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21030317
1 Gong L, Li Y X, Jin C L. Transactions of the Chinese Society of Agricultu-ral Engineering, 2018, 34(13), 144 (in Chinese).
贡力, 李雅娴, 靳春玲. 农业工程学报, 2018, 34(13), 144.
2 Azarsa P, Gupta R. Micron, 2019, 122, 21.
3 Molendowska A, Wawrzenczyk J. IOP Conference Series: Materials Science and Engineering, 2017,245(2), 022046.
4 Zhao Y R, Liu F F, Wang L, et al. Journal of Building Materials, 2020,23(6) ,1328 (in Chinese).
赵燕茹, 刘芳芳, 王磊, 等.建筑材料学报, 2020,23(6), 1328.
5 Wang C, Chen F. In: Proceedings of the 2019 International Conference on Electronical, Mechanical and Materials Engineering (ICE2ME 2019), Wuhan, 2019, pp.203.
6 Li J, Qiao H, Zhu F. Emerging Materials Research, 2019, 8(3), 1.
7 Yan W J, Niu F J, Wu Z J, et al. Journal of Traffic and Transportation Engineering, 2016,16(4), 37 (in Chinese).
严武建, 牛富俊, 吴志坚, 等. 交通运输工程学报, 2016, 16(4), 37.
8 Yu H, Tan Y, Yang L. Journal of Materials in Civil Engineering, 2017, 29(7), 04017041.
9 Yin R, Hu J, Liu Y, et al. International Journal of Modern Physics B, 2019,33,1940054.
10 Liu X F, Lin W X, Li J X. Concrete, 2017(1), 133 (in Chinese).
刘肖凡, 林武星, 李继祥.混凝土, 2017(1), 133.
11 Xu W B, Li Q L, Tian M M. Chinese Journal of Engineering, 2019, 41(12), 1618 (in Chinese).
徐文彬, 李乾龙, 田明明.工程科学学报, 2019, 41(12), 1618.
12 Richardson A. Structural Survey, 2003, 21(2), 87.
13 Wang C F. Study on durability of polypropylene fiber concrete in chloride environment. Ph.D. Thesis, Xi'an University of Architecture and Techno-logy, China, 2012(in Chinese).
王晨飞. 氯盐环境下聚丙烯纤维混凝土耐久性能研究.博士学位论文,西安建筑科技大学, 2012.
14 Cheng H Q, Gao D Y. Journal of Southeast University(Natural Science Edition), 2010, 40(S2), 197 (in Chinese).
程红强, 高丹盈.东南大学学报(自然科学版), 2010, 40(S2), 197.
15 Tang W, Zhang G T, Dong H J, et al. Materials Reports A:Review Papers, 2014,28(6),123 (in Chinese).
唐巍, 张广泰, 董海蛟, 等. 材料导报:综述篇, 2014, 28(6), 123.
16 Zhang G T, Chen Y, Lu H B, et al. Chinese Journal of Engineering, 2022,44(2),208 (in Chinese).
张广泰, 陈勇, 鲁海波,等. 工程科学学报, 2022,44(2),208.
17 Zhou M R,Zhang X M. Journal of Functional Materials, 2021, 52(1), 1133 (in Chinese).
周美容, 张雪梅.功能材料, 2021, 52(1), 1133.
18 Xin M, Wang X Z, Tong H. Journal of Liaoning University of Technology (Natural Science Edition), 2020, 40(1), 35 (in Chinese).
辛明, 王学志, 佟欢. 辽宁工业大学学报(自然科学版), 2020,40(1),35.
19 Tu L, Kruger D, Wagener J B, et al. Magazine of Concrete Research, 1998, 50(3), 209.
20 Zou D, Wang Z, Shen M, et al. Construction and Building Materials, 2020, 268(8), 121097.
21 Liang H, Wang Y Y, Su Z H, et al. Sichuan Water Power, 2021, 40(3),5 (in Chinese).
梁慧, 王媛怡, 苏振华,等. 四川水力发电, 2021, 40(3),5.
22 Xue H J, Shen X D, Zou C X, et al. Journal of Building Materials, 2019, 22(2),199 (in Chinese).
薛慧君, 申向东, 邹春霞, 等. 建筑材料学报, 2019, 22(2), 199.
23 Duan A. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process. Ph.D. Thesis, Tsinghua University, China, 2009(in Chinese).
段安. 受冻融混凝土本构关系研究和冻融过程数值模拟.博士学位论文,清华大学, 2009.
24 Wu Q L, Yu H F, Chen X X. In: Establishment and Narration of Mathematical Model: Tenth International Conference of Chinese Transportation Professionals (ICCTP). Beijing, China, 2010.
25 Du P, Yao Y, Wang L, et al. Journal of Yangtze River Scientific Research Institute, 2014,31(4),77 (in Chinese).
杜鹏, 姚燕, 王玲, 等. 长江科学院院报, 2014,31(4),77.
26 Su X P, Guo J H. Advanced Materials Research, 2014, 919-921, 1849.
27 Lu C G, Wei Z Q, Qiao H X, et al. Advanced Engineering Sciences, 2021,53(1),113 (in Chinese).
路承功, 魏智强, 乔宏霞, 等.工程科学与技术, 2021,53(1),113.
[1] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[2] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[3] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[4] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[5] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[6] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[7] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[8] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[9] 张向东, 蔡习军, 蔡飞, 张世宏, 陈利. 钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能[J]. 材料导报, 2022, 36(15): 21020062-6.
[10] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[11] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[12] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[13] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[14] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[15] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed