Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21040158-7    https://doi.org/10.11896/cldb.21040158
  无机非金属及其复合材料 |
动水冲刷作用下季冻区沥青混合料水损害发展的细观过程
王英1, 杨熙1, 姜继斌2, 李萍1,*, 念腾飞1
1 兰州理工大学土木工程学院,兰州 730050
2 中国市政工程西北设计研究院有限公司,兰州 730000
The Micro Process of Water Damage in Asphalt Mixture in Seasonal Frozen Area Under the Dynamic Water Erosion
WANG Ying1, YANG Xi1, JIANG Jibin2, LI Ping1,*, NIAN Tengfei1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 China Municipal Engineering Northwest Design and Research Institute Co., Ltd. , Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 7231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 动水冲刷是引起沥青混合料水损害现象的重要因素之一,采用自主加工的动水冲刷模拟设备,对分别添加水泥、消石灰、高分子聚合物抗剥落剂的沥青混合料以及普通AC类沥青混合料在动水冲刷和冻融循环共同作用下的空隙率进行测定,并结合CT扫描试验,对沥青混合料水损害过程中的细观孔隙结构演化进行分析。试验结果表明:随着动水冲刷-冻融循环次数的增加,混合料内部出现更多的冻胀小孔。动水冲刷导致细料进一步流失,冻胀作用加剧,小孔逐渐连通,反向加剧动水冲刷作用。对于孔隙较为团聚的部位以及试件的边缘区域,动水冲刷以及冻融的作用更显著,孔隙贯通范围更广。CT三维孔隙模型数据表明,混合料试件的体孔隙率呈由上向下递减的趋势,其中,对于添加水泥和消石灰的沥青混合料试件,上层和中层孔隙率的增幅水平相当,动水冲刷-冻融循环的作用深度最大,添加高分子聚合物的沥青混合料孔隙增长幅度最小。与常规静态浸水模式下的冻融试验相比,动水冲刷-冻融循环作用模式下沥青混合料的劈裂抗拉强度降幅更大,力学强度的衰退趋势与宏细观孔隙结构的变化规律基本一致。综合数据表明,循环作用后,添加高分子聚合物抗剥落剂的沥青混合料各项性能指标最佳,其次为添加消石灰和水泥的混合料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王英
杨熙
姜继斌
李萍
念腾飞
关键词:  沥青混合料  动水冲刷  冻融循环  空隙率  孔隙结构    
Abstract: The dynamic water scouring is one of the most important factors causing water damage of asphalt mixture. In this work, the air void of the ordinary AC asphalt mixture, mixtures with cement, hydrated lime and polymer anti stripping agent were measured under the combined action of dynamic water scouring and freeze-thaw (DWS-FT) cycle by a self-made simulation equipment. Meanwhile, the evolution of meso pore structure in the process of water damage of asphalt mixture was analyzed with the CT scanning test combined. The test results show that with the increase of DWS-FT cycle times, more frost heaving holes were found in the mixture. Combined with the loss of fine materials under the action of dynamic water. The frost heaving effect is intensified and holes are gradually connected which may aggravate the scouring effect of dynamic water in reverse. The effect of DWS-FT became stronger and the range of pore penetration was wider for the parts with more agglomerated pores and the edge area of specimens. The 3D pore model data show that the bulk porosity of the mixture has a decreasing trend from the upper to the bottom. For the mixture with cement and slaked lime, the porosity increase rate of the upper layer is close to that of the middle layers, indicating that the depth of the DWS-FT cycle is the largest. The porosity increase rate of the pore of the asphalt mixture with polymer is the smallest. With the traditional freeze-thaw test compared, the splitting tensile strength of the mixture decreases more significantly under the DWS-FT cycle mode, and the decay trend of mechanical strength is basically consistent with the change law of macro and micro pore structure. The comprehensive data show that the asphalt mixture with polymer anti stripping agent has the best performance and water stability after cycling, followed by the mixture with hydrated lime and cement.
Key words:  asphalt mixtures    dynamic water scour    freeze-thaw cycle    void rate    pore structure
发布日期:  2022-05-24
ZTFLH:  U414  
基金资助: 国家自然科学基金(51868047);甘肃省自然科学基金(20JR10RA171)
通讯作者:  lzlgliping@126.com   
作者简介:  王英,兰州理工大学讲师,2010年获得西南交通大学道路与铁道工程专业硕士学位。2021年获兰州大学地质工程专业博士学位,主要从事特殊土路基病害工程处置及沥青混合料路用性能方面的研究。目前已发表期刊论文6篇,分别收录于《岩石力学与工程学报》《岩土力学》《吉林大学学报》以及Soils and foundation等期刊。
李萍,兰州理工大学教授、博士研究生导师。2000年7月毕业于中国科学院兰州分院寒区旱区环境与工程研究所获博士学位,进入兰州理工大学土木工程学院任教,现担任道路与桥梁工程学科学术带头人。主要从事沥青路面材料以及热再生沥青混合料路用性能及路面结构优化设计方面的研究。近五年发表期刊论文40余篇,其中EI检索20余篇。
引用本文:    
王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
WANG Ying, YANG Xi, JIANG Jibin, LI Ping, NIAN Tengfei. The Micro Process of Water Damage in Asphalt Mixture in Seasonal Frozen Area Under the Dynamic Water Erosion. Materials Reports, 2022, 36(10): 21040158-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040158  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21040158
1 Dong Z J, Tan Y Q, Cao L P, et al. Journal of Harbin Institute of Technology, 2007, 39 (10), 1614(in Chinese).
董泽蛟, 谭忆秋, 曹丽萍, 等.哈尔滨工业大学学报, 2007, 39(10), 1614.
2 Tang W Z, Ou J Q, Cui X Z, et a1. Journal of Shandong University (Engineering Science), 2015, 45(6), 84(in Chinese).
汤潍泽, 欧金秋, 崔新壮, 等. 山东大学学报(工学版), 2015, 45(6), 84.
3 Varveri A, Avgerinopoulos S, Scarpas A. Road Materials and Pavement Design, 2016, 17(1), 168.
4 Jiang W H, Zhang X N, Li Z. Journal of Highway Transportation(English Edition), 2013, 7 (1), 23.
5 Kutay M E, Aydilek A H. Computer-aided Civil & Infrastructure Engi-neering, 2010, 24(3), 212.
6 Xu H N, Guo W, Tan Y Q. Journal of Cold Regions Science and Technology, 2015. 123, 99.
7 Yi J Y. Study on freeze-thaw damage characteristics of porous asphalt mixtures based on interfacial behaviors. Ph.D. Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
易军艳. 基于界面行为的多孔沥青混合料冻融损伤特性研究. 博士学位论文, 哈尔滨工业大学, 2012.
8 Yang R H, Xu Z H, Li Y Z. Journal of Tongji University (Natural Science Edition), 2007, 35 (11), 1486(in Chinese).
杨瑞华, 许志鸿, 李宇峙. 同济大学学报(自然科学版), 2007, 35(11), 1486.
9 Alomaari A A, Tashman L, Masad E, et al. Asphalt Paving Technology Association of Asphalt Paving Technologists Proceedings of the Technical Sessions, 2002, 71(1), 30.
10 Arambula E, Masad E, Martin A E. Journal of Materials in Civil Engineering, 2007, 19(8), 655.
11 Zhang X N, Xiao X. Journal of Harbin Institue of Technology, 2014, 46(8), 84(in Chinese).
张肖宁, 肖鑫. 哈尔滨工业大学学报, 2014, 46(8), 84.
12 Xu H, Guo W, Tan Y Q. Materials & Design, 2015, 86(DEC.5), 436.
13 Li P, Zhang P, Nian T F, et al. Journal of Lanzhou University of Tech-nology, 2018, 44(2), 135(in Chinese).
李萍, 张盼, 念腾飞, 等. 兰州理工大学学报. 2018, 44(2), 135.
14 Wang Y, Li P, Nian T F, et al. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1), 174(in Chinese).
王英, 李萍, 念腾飞, 等. 吉林大学学报(工学版), 2020, 50(1), 174.
15 Gao Q J, Guo C C, Liu Y T. Measurement, 2015, 62, 81.
16 Lei Y, Hu X D, Wang H N, et al. Measurement, 2017, 98, 1.
17 Wu W L, Wang D Y, Zhang X N, et al. Journal of Central South University (Science and Technology), 2012, 43(6), 2343(in Chinese).
吴文亮, 王端宜, 张肖宁, 等. 中南大学学报(自然科学版), 2012, 43(6), 2343.
18 Zhang K, Zhang Z Q. Journal of Hefei University of Technology(Science and Technology), 2015, 38(7), 955(in Chinese).
张苛, 张争奇. 合肥工业大学学报(自然科学版), 2015, 38(7), 955.
[1] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[2] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[3] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[4] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[5] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[6] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[7] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[8] 王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
[9] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[10] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[11] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[12] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[13] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[14] 马衍轩, 徐亚茜, 于霞, 赵飞, 李梦瑶, 张鹏, 彭帅. 泡沫混凝土的负泊松比设计与静载力学特性研究[J]. 材料导报, 2021, 35(24): 24068-24074.
[15] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed