Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7077-7086    https://doi.org/10.11896/cldb.19070264
  无机非金属及其复合材料 |
碳纤维微观结构表征:小角X射线散射
李登华1,2, 吕春祥3, 杨禹3, 王立娜3, 崔东霞2, 刘哲2, 郭赢赢1
1 山西交通科学研究院集团有限公司,新型道路材料国家地方联合工程实验室,太原 030006
2 山西省交通科技研发有限公司,太原 030032
3 中国科学院山西煤炭化学研究所,碳纤维制备技术国家工程实验室,太原 030001
Characterization of the Microstructure of Carbon Fibers: Small Angle X-ray Scattering
LI Denghua1,2, LYU Chunxiang3, YANG Yu3, WANG Li'na3, CUI Dongxia2, LIU Zhe2, GUO Yingying1
1 National and Local Joint Engineering Laboratory of Advanced Road Materials, Shanxi Transportation Research Institute Group Co., Ltd., Taiyuan 030006, China
2 Shanxi Transportation Technology R& D Co., Ltd., Taiyuan 030032, China
3 National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
下载:  全 文 ( PDF ) ( 4379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 小角X射线散射技术(SAXS)是研究碳材料内部微孔结构的重要方法之一。当X射线照射到样品上时,如试样内部存在任何纳米尺度的密度不均匀区,在入射X射线束周围小角度范围内均会出现不同程度的X射线散射现象。基于此,利用SAXS不仅可以获得碳材料的孔结构信息,更微观的微电子密度起伏和较大尺度的微原纤结构信息都可以通过适当的方法解析出来。近年来,针对碳纤维等碳结构的SAXS解析理论逐渐深入,包括Debye相关距离理论等经典理论纷纷出现新的应用尝试,而Unified fit模型、“Ruland streak”法等的出现也使研究者对碳结构有了更新和更全面的理解。首先,准两相体系下碳纤维微观结构的SAXS分析取得突破。以Debye相关距离理论为突破口对碳纤维散射体系类型进行分析时发现,碳纤维与其石墨化纤维在微观和介观尺度上存在显著差异性,其差异性的根源在于碳的无定型结构状态,且此类结构的散射信息可以被SAXS所捕捉,进而成为总散射强度的分量。此时,利用Unified fit模型或“双Debye”模型可以很好地分析准两相体系中无定形结构和微孔的结构特征。其次,基于“Ruland streak”法的散射体取向分析方法被成功应用于碳纤维孔结构分析。该方法假设了择优取向的散射体具有较大的长径比,而散射强度主要集中于散射体主轴的法向,单个散射体将产生一个沿法向的散射条纹,因此散射体的取向可以通过分析接收器平面内散射体法向散射信号的分布而得到。此外,将Porod理论应用于碳结构内部微电子密度起伏分析和将麦克斯韦函数应用于碳纤维孔结构分布分析也是近年来涌现的新理论、新技术。据此本文综述了近年来应用SAXS对碳纤维进行微观结构表征的进展,对SAXS应用于碳材料微电子密度起伏、分形结构、孔隙结构、择优取向、无定形结构的测试及数据解析进行了详细阐述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李登华
吕春祥
杨禹
王立娜
崔东霞
刘哲
郭赢赢
关键词:  碳纤维  X射线散射  孔隙结构  微原纤  分形    
Abstract: Small angle X-ray scattering (SAXS) is one of the most important methods in the study of the internal void structures of carbon materials. When X-ray irradiates, the scattering phenomenon will essentially appears around the incident X-ray beam if there was any detectable density differences within any nanoscale area of the samples. Based on this, by using SAXS we can obtain not only the pore structure information of carbon materials, but also other structural information including the microfibular structure, the local density fluctuation, etc., through appropriate methods. In recent years, the SAXS analytical theories for carbon fiber, etc. have gradually developed. Classical theories such as Debye's correlation theory have emerged, and the development of the Unified fit model and the “Ruland streak” method has also enabled researchers to get a comprehensive understanding of the carbon structures. Among them, a breakthrough was made in the analysis of carbon fiber microstructure as quasi-two-phase system by SAXS. Significant differences on both microscopic and mesoscopic scale were observed when a scattering system analysis was adopted to carbon fibers and their graphitization fibers according to Debye theory. The amorphous structure was considered to be the main cause of the differences, and the structure of scattering information can be captured by SAXS and then become a component of total scat-tering intensity. In this case, the Unified fit model or the “double Debye” model can be used to analyze the structural characteristics of the microvoids and amorphous structure within the so-called “quasi-two-phase system”. Furthermore, the scattering orientation analysis based on “Ruland streak” method was successfully applied to the microvoids analysis of carbon fibers. The method assumed that the preferred-oriented scatterers all had a large aspect ratio, and the scattering intensity was mainly concentrated on the normal direction of the principal axis. A single scatterer would produce a scattering fringe along the normal direction, so the preferred orientation of the scatterers could be obtained according to the distribution of the signals in the receiver plane. In addition, the application of Porod theory to the analysis of microelectronic density fluctuations in carbon structures, and the application of Maxwell function to the analysis of pore size distribution are also new theories or technologies emerging in recent years. The paper hereby reviews the progress on SAXS methodologies centred on the microstructure of carbon fibers. The details of the experiments and data analysis about the structure features including density fluctuation, fractal phenomenon, microvoids, anisotropy and amorphous structure, etc. are elaborated.
Key words:  carbon fiber    X-ray scattering    microvoid    microfibrillar    fractal
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TB133  
基金资助: 山西省科技重大专项(20181101019);山西省重点研发计划项目(201903D121005);山西交控集团科技项目(18-JKKJ-22;19-JKKJ-53)
作者简介:  李登华,博士,高级工程师。2014年毕业于中国科学院大学,获得材料学博士学位。同年入职山西交通科学研究院集团有限公司工作至今,主要从事碳纤维及其复合材料的应用基础研究。在国内外重要期刊发表文章20多篇,申报专利20余项。
引用本文:    
李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
LI Denghua, LYU Chunxiang, YANG Yu, WANG Li'na, CUI Dongxia, LIU Zhe, GUO Yingying. Characterization of the Microstructure of Carbon Fibers: Small Angle X-ray Scattering. Materials Reports, 2021, 35(7): 7077-7086.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070264  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7077
1 Ruland W. Advanced Materials, 1990, 2(11), 528.
2 He F. Carbon fibre and graphite fibre, Chemical Industry Press, China, 2010(in Chinese).
贺福. 碳纤维及石墨纤维, 化学工业出版社, 2010.
3 Cheng Y P. Shanxi Science & Technology of Communications, 2017(4), 86(in Chinese).
程宇鹏. 山西交通科技, 2017(4), 86.
4 Cao S J. Shanxi Science & Technology of Communications, 2006(5), 46(in Chinese).
曹世军. 山西交通科技, 2006(5), 46.
5 He F, Sun W. Hi-Tech Fiber & Application, 2007, 32(6), 5(in Chinese).
贺福, 孙微. 高科技纤维与应用, 2007, 32(6), 5.
6 Li D, Lu C, Wang L, et al. Materials Science and Engineering: A, 2017, 685, 65.
7 Li D H, Wu G P, Lyu C X, et al. New Carbon Materials, 2010, 25(1), 41(in Chinese).
李登华, 吴刚平, 吕春祥, 等. 新型炭材料, 2010, 25(1), 41.
8 Shioya M, Takaku A. Journal of Applied Physics, 1985, 58(11), 4074.
9 He F. Hi-Tech Fiber & Application, 2005, 30(6), 20(in Chinese).
贺福. 高科技纤维与应用, 2005, 30(6), 20.
10 Li D H, Lyu C X, Wu G P, et al. Journal of Instrumental Analysis, 2010, 29(4),321(in Chinese).
李登华 吕春祥, 吴刚平, 等. 分析测试学报, 2010, 29(4),321.
11 Lin X, Wang C G, Yu M J, et al. Advanced Materials Research, 2013, 664,614.
12 Zhang C H, Sheng Y, Tian H, et al. Acta Physica Sinica, 2011, 60(3), 405(in Chinese).
张彩红, 盛毅, 田红, 等. 物理学报, 2011, 60(3), 405.
13 Cohaut N, Guet J M, Diduszko R, et al. Carbon, 1996, 34(5), 674.
14 Glatter O, Kratky O. Small angle X-ray scattering, Academic Press London, 1982.
15 Perret R, Ruland W. Journal of Applied Crystallography, 1969, 2(5), 209.
16 Iiyama T, Kobayashi Y, Kaneko K, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2004, 241(1-3), 207.
17 Debye P, Bueche A. Journal of Applied Physics, 1949, 20(6), 518.
18 Li D H, Lu C X, Wu G P, et al. Journal of Applied Crystallography, 2014, 47(6), 1809.
19 Sheng Y, Zhang C H,Xu Y, et al. New Carbon Materials, 2009, 24(3), 270(in Chinese).
盛毅, 张彩红, 徐耀, 等. 新型炭材料, 2009, 24(3), 270.
20 Ruland W. Journal of Applied Physics, 1967, 38(9), 3585.
21 Beaucage G. Journal of Applied Crystallography, 1995, 28(6), 717.
22 Li D, Lu C, Du S, et al. Applied Physics A, 2016, 122(11), 956.
23 Ruland W, Tompa H. Kolloid-Zeitschrift and Zeitschrift für Polymere, 1972, 250(5), 471.
24 Zhang M, Meng F L, Meng Z F. Acta Scientiarum Naturalium Universitatis Jilinensis, 1997(1), 66(in Chinese).
张明, 孟繁玲, 孟昭富. 吉林大学自然科学学报, 1997(1), 66.
25 Ruland W. Carbon, 2001, 39(2), 323.
26 Gao Z M, Xu Y, Huang K K, et al. Journal of Jilin University: Science Edition, 2005, 43(1), 91(in Chinese).
高忠民, 徐跃, 黄科科, 等. 吉林大学学报: 理学版, 2005, 43(1), 91.
27 Li D H. Structural evolution during the preparation of high performance carbon fibers. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2014(in Chinese).
李登华. 高强高模碳纤维制备过程中微观结构的演变规律. 博士学位论文, 中国科学院大学, 2014.
28 Gupta A, Harrison I R, Lahijani J. Journal of Applied Crystallography, 1994, 27(4), 627.
29 Ruland W. Journal of Applied Crystallography, 1971, 4(1), 70.
30 Li Z H. SAXS method and its application in colloid and mesoporous material.Ph.D. Thesis,Institute of Coal Chemistry Chinese Academy of Sciences, China, 2002(in Chinese).
李志宏. SAXS方法及其在胶体和介孔材料研究中的应用. 博士学位论文, 中国科学院山西煤炭化学研究所, 2002.
31 Koberstein J T, Morra B, Stein R S. Journal of Applied Crystallography, 1980, 13(1), 34.
32 Meng Z F. Theory and application of small angle X-ray scattering, Jilin Science and Technology Press, China, 1996(in Chinese).
孟昭富. 小角X射线散射理论及应用, 吉林科学技术出版社, 1996.
33 Ma L D. Introduction to synchrotron radiation applications, Fudan University Press, China, 2001(in Chinese).
马礼敦. 同步辐射应用概论, 复旦大学出版社, 2001.
34 Chen Y H, Wu Q L, Pan D. Carbon, 2006(3), 19(in Chinese).
陈宇晗, 吴琪琳, 潘鼎. 炭素, 2006(3), 19.
35 Guinier A, Fournet G. Small-angle scattering of X-rays, Wiley New York, 1955.
36 Stribeck N. X-ray scattering of soft matter, Springer Science & Business Media, 2007.
37 Zhu Y P. Small angle X-ray scattering, Chemical Industry Press, China, 2008(in Chinese).
朱育平. 小角X射线散射, 化学工业出版社, 2008.
38 Schmidt P. Journal of Applied Crystallography, 1991, 24(5), 414.
39 Takaku A, Shioya M. Journal of Materials Science, 1986, 21(12), 4443.
40 Debye P, Anderson H R, Brumberger H. Journal of Applied Physics, 1957, 28(6), 679.
41 Ruike M, Kasu T, Setoyama N, et al. The Journal of Physical Chemistry, 1994, 98(38), 9594.
42 Pauw B R, Vigild M E, Mortensen K, et al. Journal of Applied Crystallography, 2010, 43(4), 837.
43 Li W, Long D H, Miyawaki J, et al. Journal of Materials Science, 2012, 47(2), 919.
44 Williams W S, Steffens D A, Bacon R. Journal of Applied Physics, 1970, 41(12), 4893.
45 Guigon M, Oberlin A, Desarmot G. Fibre Science & Technology, 1984, 20(1), 55.
46 Thünemann A F, Ruland W. Macromolecules, 2000, 33(5), 1848.
47 Gupta A, Harrison I R. Carbon, 1996, 34(11), 1427.
48 Gupta A. Journal of Applied Crystallography, 1994, 27(1), 627.
49 Yuan Y T. Probability theory and mathematical statistics, China Renmin University Press, China, 1990(in Chinese).
袁荫棠. 概率论与数理统计, 中国人民大学出版社, 1990.
50 Xu Y, Li X S. PTCA (Part A:Physical Testing), 2003, 39(1), 28(in Chinese).
徐跃, 李向山. 理化检验: 物理分册, 2003, 39(1), 28.
51 Perret R, Ruland W. Journal of Applied Crystallography, 1970, 3(6), 525.
52 Guigon M, Oberlin A, Desarmot G. Fibre Science & Technology, 1984, 20(3), 177.
53 Zhu C Z, Liu X F, Yu X L, et al. Carbon, 2012, 50(1), 235.
54 Donnet J B, Bansal R C. Carbon fibers, Marcel Dekker, New York, 1984.
55 Paris O, Loidl D, Peterlik H, et al. Journal of Applied Crystallography, 2000, 33(3-1), 695.
56 Sugimoto Y, Shioya M, Yamamoto K, et al. Carbon, 2012, 50(8), 2860.
57 Sugimoto Y, Kato T, Shioya M, et al. Carbon, 2013, 57, 416.
58 Tyson C N. Journal of Physics D: Applied Physics, 1975, 8(7), 749.
59 Tyson C N, Marjoram J R. Journal of Applied Crystallography, 1971, 4(6), 488.
60 Bai Y J, Wang C G, Lun N, et al. Carbon, 2006, 44(9), 1773.
61 Brown N M D, You H X. Surface Science, 1990, 237(1-3), 273.
62 Hoffman W P. Carbon, 1992, 30(3), 315.
63 Kaburagi M, Bin Y Z, Zhu D, et al. Carbon, 2003, 41(5), 915.
64 Schaefer D W, Pekala R, Beaucage G. Journal of Non-Crystalline Solids, 1995,186(2),159.
65 Beaucage G. Journal of Applied Crystallography, 1996, 29(2), 134.
66 Beaucage G, Schaefer D. Journal of Non-Crystalline Solids, 1994, 172(2), 797.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[2] 李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
[3] 王珩, 陆采荣, 刘伟宝, 梅国兴, 戈雪良, 杨虎. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(Z2): 255-260.
[4] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[5] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[6] 谢锐, 吕铮, 徐长伟, 刘春明. 钛元素对9Cr氧化物弥散强化钢微观组织和拉伸性能的影响[J]. 材料导报, 2020, 34(22): 22111-22117.
[7] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[8] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[9] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[10] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[11] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[12] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[13] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[14] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[15] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed