Characterization of the Microstructure of Carbon Fibers: Small Angle X-ray Scattering
LI Denghua1,2, LYU Chunxiang3, YANG Yu3, WANG Li'na3, CUI Dongxia2, LIU Zhe2, GUO Yingying1
1 National and Local Joint Engineering Laboratory of Advanced Road Materials, Shanxi Transportation Research Institute Group Co., Ltd., Taiyuan 030006, China 2 Shanxi Transportation Technology R& D Co., Ltd., Taiyuan 030032, China 3 National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Abstract: Small angle X-ray scattering (SAXS) is one of the most important methods in the study of the internal void structures of carbon materials. When X-ray irradiates, the scattering phenomenon will essentially appears around the incident X-ray beam if there was any detectable density differences within any nanoscale area of the samples. Based on this, by using SAXS we can obtain not only the pore structure information of carbon materials, but also other structural information including the microfibular structure, the local density fluctuation, etc., through appropriate methods. In recent years, the SAXS analytical theories for carbon fiber, etc. have gradually developed. Classical theories such as Debye's correlation theory have emerged, and the development of the Unified fit model and the “Ruland streak” method has also enabled researchers to get a comprehensive understanding of the carbon structures. Among them, a breakthrough was made in the analysis of carbon fiber microstructure as quasi-two-phase system by SAXS. Significant differences on both microscopic and mesoscopic scale were observed when a scattering system analysis was adopted to carbon fibers and their graphitization fibers according to Debye theory. The amorphous structure was considered to be the main cause of the differences, and the structure of scattering information can be captured by SAXS and then become a component of total scat-tering intensity. In this case, the Unified fit model or the “double Debye” model can be used to analyze the structural characteristics of the microvoids and amorphous structure within the so-called “quasi-two-phase system”. Furthermore, the scattering orientation analysis based on “Ruland streak” method was successfully applied to the microvoids analysis of carbon fibers. The method assumed that the preferred-oriented scatterers all had a large aspect ratio, and the scattering intensity was mainly concentrated on the normal direction of the principal axis. A single scatterer would produce a scattering fringe along the normal direction, so the preferred orientation of the scatterers could be obtained according to the distribution of the signals in the receiver plane. In addition, the application of Porod theory to the analysis of microelectronic density fluctuations in carbon structures, and the application of Maxwell function to the analysis of pore size distribution are also new theories or technologies emerging in recent years. The paper hereby reviews the progress on SAXS methodologies centred on the microstructure of carbon fibers. The details of the experiments and data analysis about the structure features including density fluctuation, fractal phenomenon, microvoids, anisotropy and amorphous structure, etc. are elaborated.
李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
LI Denghua, LYU Chunxiang, YANG Yu, WANG Li'na, CUI Dongxia, LIU Zhe, GUO Yingying. Characterization of the Microstructure of Carbon Fibers: Small Angle X-ray Scattering. Materials Reports, 2021, 35(7): 7077-7086.
1 Ruland W. Advanced Materials, 1990, 2(11), 528. 2 He F. Carbon fibre and graphite fibre, Chemical Industry Press, China, 2010(in Chinese). 贺福. 碳纤维及石墨纤维, 化学工业出版社, 2010. 3 Cheng Y P. Shanxi Science & Technology of Communications, 2017(4), 86(in Chinese). 程宇鹏. 山西交通科技, 2017(4), 86. 4 Cao S J. Shanxi Science & Technology of Communications, 2006(5), 46(in Chinese). 曹世军. 山西交通科技, 2006(5), 46. 5 He F, Sun W. Hi-Tech Fiber & Application, 2007, 32(6), 5(in Chinese). 贺福, 孙微. 高科技纤维与应用, 2007, 32(6), 5. 6 Li D, Lu C, Wang L, et al. Materials Science and Engineering: A, 2017, 685, 65. 7 Li D H, Wu G P, Lyu C X, et al. New Carbon Materials, 2010, 25(1), 41(in Chinese). 李登华, 吴刚平, 吕春祥, 等. 新型炭材料, 2010, 25(1), 41. 8 Shioya M, Takaku A. Journal of Applied Physics, 1985, 58(11), 4074. 9 He F. Hi-Tech Fiber & Application, 2005, 30(6), 20(in Chinese). 贺福. 高科技纤维与应用, 2005, 30(6), 20. 10 Li D H, Lyu C X, Wu G P, et al. Journal of Instrumental Analysis, 2010, 29(4),321(in Chinese). 李登华 吕春祥, 吴刚平, 等. 分析测试学报, 2010, 29(4),321. 11 Lin X, Wang C G, Yu M J, et al. Advanced Materials Research, 2013, 664,614. 12 Zhang C H, Sheng Y, Tian H, et al. Acta Physica Sinica, 2011, 60(3), 405(in Chinese). 张彩红, 盛毅, 田红, 等. 物理学报, 2011, 60(3), 405. 13 Cohaut N, Guet J M, Diduszko R, et al. Carbon, 1996, 34(5), 674. 14 Glatter O, Kratky O. Small angle X-ray scattering, Academic Press London, 1982. 15 Perret R, Ruland W. Journal of Applied Crystallography, 1969, 2(5), 209. 16 Iiyama T, Kobayashi Y, Kaneko K, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2004, 241(1-3), 207. 17 Debye P, Bueche A. Journal of Applied Physics, 1949, 20(6), 518. 18 Li D H, Lu C X, Wu G P, et al. Journal of Applied Crystallography, 2014, 47(6), 1809. 19 Sheng Y, Zhang C H,Xu Y, et al. New Carbon Materials, 2009, 24(3), 270(in Chinese). 盛毅, 张彩红, 徐耀, 等. 新型炭材料, 2009, 24(3), 270. 20 Ruland W. Journal of Applied Physics, 1967, 38(9), 3585. 21 Beaucage G. Journal of Applied Crystallography, 1995, 28(6), 717. 22 Li D, Lu C, Du S, et al. Applied Physics A, 2016, 122(11), 956. 23 Ruland W, Tompa H. Kolloid-Zeitschrift and Zeitschrift für Polymere, 1972, 250(5), 471. 24 Zhang M, Meng F L, Meng Z F. Acta Scientiarum Naturalium Universitatis Jilinensis, 1997(1), 66(in Chinese). 张明, 孟繁玲, 孟昭富. 吉林大学自然科学学报, 1997(1), 66. 25 Ruland W. Carbon, 2001, 39(2), 323. 26 Gao Z M, Xu Y, Huang K K, et al. Journal of Jilin University: Science Edition, 2005, 43(1), 91(in Chinese). 高忠民, 徐跃, 黄科科, 等. 吉林大学学报: 理学版, 2005, 43(1), 91. 27 Li D H. Structural evolution during the preparation of high performance carbon fibers. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2014(in Chinese). 李登华. 高强高模碳纤维制备过程中微观结构的演变规律. 博士学位论文, 中国科学院大学, 2014. 28 Gupta A, Harrison I R, Lahijani J. Journal of Applied Crystallography, 1994, 27(4), 627. 29 Ruland W. Journal of Applied Crystallography, 1971, 4(1), 70. 30 Li Z H. SAXS method and its application in colloid and mesoporous material.Ph.D. Thesis,Institute of Coal Chemistry Chinese Academy of Sciences, China, 2002(in Chinese). 李志宏. SAXS方法及其在胶体和介孔材料研究中的应用. 博士学位论文, 中国科学院山西煤炭化学研究所, 2002. 31 Koberstein J T, Morra B, Stein R S. Journal of Applied Crystallography, 1980, 13(1), 34. 32 Meng Z F. Theory and application of small angle X-ray scattering, Jilin Science and Technology Press, China, 1996(in Chinese). 孟昭富. 小角X射线散射理论及应用, 吉林科学技术出版社, 1996. 33 Ma L D. Introduction to synchrotron radiation applications, Fudan University Press, China, 2001(in Chinese). 马礼敦. 同步辐射应用概论, 复旦大学出版社, 2001. 34 Chen Y H, Wu Q L, Pan D. Carbon, 2006(3), 19(in Chinese). 陈宇晗, 吴琪琳, 潘鼎. 炭素, 2006(3), 19. 35 Guinier A, Fournet G. Small-angle scattering of X-rays, Wiley New York, 1955. 36 Stribeck N. X-ray scattering of soft matter, Springer Science & Business Media, 2007. 37 Zhu Y P. Small angle X-ray scattering, Chemical Industry Press, China, 2008(in Chinese). 朱育平. 小角X射线散射, 化学工业出版社, 2008. 38 Schmidt P. Journal of Applied Crystallography, 1991, 24(5), 414. 39 Takaku A, Shioya M. Journal of Materials Science, 1986, 21(12), 4443. 40 Debye P, Anderson H R, Brumberger H. Journal of Applied Physics, 1957, 28(6), 679. 41 Ruike M, Kasu T, Setoyama N, et al. The Journal of Physical Chemistry, 1994, 98(38), 9594. 42 Pauw B R, Vigild M E, Mortensen K, et al. Journal of Applied Crystallography, 2010, 43(4), 837. 43 Li W, Long D H, Miyawaki J, et al. Journal of Materials Science, 2012, 47(2), 919. 44 Williams W S, Steffens D A, Bacon R. Journal of Applied Physics, 1970, 41(12), 4893. 45 Guigon M, Oberlin A, Desarmot G. Fibre Science & Technology, 1984, 20(1), 55. 46 Thünemann A F, Ruland W. Macromolecules, 2000, 33(5), 1848. 47 Gupta A, Harrison I R. Carbon, 1996, 34(11), 1427. 48 Gupta A. Journal of Applied Crystallography, 1994, 27(1), 627. 49 Yuan Y T. Probability theory and mathematical statistics, China Renmin University Press, China, 1990(in Chinese). 袁荫棠. 概率论与数理统计, 中国人民大学出版社, 1990. 50 Xu Y, Li X S. PTCA (Part A:Physical Testing), 2003, 39(1), 28(in Chinese). 徐跃, 李向山. 理化检验: 物理分册, 2003, 39(1), 28. 51 Perret R, Ruland W. Journal of Applied Crystallography, 1970, 3(6), 525. 52 Guigon M, Oberlin A, Desarmot G. Fibre Science & Technology, 1984, 20(3), 177. 53 Zhu C Z, Liu X F, Yu X L, et al. Carbon, 2012, 50(1), 235. 54 Donnet J B, Bansal R C. Carbon fibers, Marcel Dekker, New York, 1984. 55 Paris O, Loidl D, Peterlik H, et al. Journal of Applied Crystallography, 2000, 33(3-1), 695. 56 Sugimoto Y, Shioya M, Yamamoto K, et al. Carbon, 2012, 50(8), 2860. 57 Sugimoto Y, Kato T, Shioya M, et al. Carbon, 2013, 57, 416. 58 Tyson C N. Journal of Physics D: Applied Physics, 1975, 8(7), 749. 59 Tyson C N, Marjoram J R. Journal of Applied Crystallography, 1971, 4(6), 488. 60 Bai Y J, Wang C G, Lun N, et al. Carbon, 2006, 44(9), 1773. 61 Brown N M D, You H X. Surface Science, 1990, 237(1-3), 273. 62 Hoffman W P. Carbon, 1992, 30(3), 315. 63 Kaburagi M, Bin Y Z, Zhu D, et al. Carbon, 2003, 41(5), 915. 64 Schaefer D W, Pekala R, Beaucage G. Journal of Non-Crystalline Solids, 1995,186(2),159. 65 Beaucage G. Journal of Applied Crystallography, 1996, 29(2), 134. 66 Beaucage G, Schaefer D. Journal of Non-Crystalline Solids, 1994, 172(2), 797.