Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7087-7095    https://doi.org/10.11896/cldb.19110194
  无机非金属及其复合材料 |
基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展
鲍玖文1,2, 庄智杰1, 张鹏1, 魏佳楠1, 高嵩1, 赵铁军1
1 青岛理工大学土木工程学院,青岛 266033
2 大连理工大学海岸和近海工程国家重点实验室,大连 116024
Research Progress of Chloride Corrosion Resistance of Concrete Exposed to Marine Tidal Environment Based on Similarity Theory
BAO Jiuwen1,2, ZHUANG Zhijie1, ZHANG Peng1, WEI Jianan1, GAO Song1, ZHAO Tiejun1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 3092KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国“海洋强国”战略的实施,海洋工程结构基础设施建设规模空前,滨海环境下混凝土材料耐久性问题也逐渐引起人们的重视。氯离子侵蚀是导致海洋环境下钢筋混凝土结构耐久性能劣化的主要因素,因此,针对滨海环境下钢筋混凝土中氯离子侵蚀规律的试验研究引起了广泛关注。实海暴露试验存在受区域影响较大、推广性差、试验周期长和影响因素复杂等缺点,不能为寿命预测模型建立提供充足的数据基础,而室内模拟加速试验可有效弥补实海暴露试验的不足。以实海暴露试验为依据,通过研究二者之间的相似性,构建实际海洋工程结构的寿命预测模型,进而将室内模拟试验结果应用到现场实际情况中,可准确地实现海洋环境下基础设施建筑结构服役寿命的预测。目前,学者们已对海洋潮汐区环境混凝土抗氯盐侵蚀性能的实海暴露试验与室内模拟加速试验开展了大量的研究,并取得了丰富的成果。一方面,建立了相应的相似性模型,进而从理论方面分析实海暴露环境和人工模拟环境下混凝土中氯离子的侵蚀规律,为寿命预测模型的建立奠定理论基础;另一方面,试验设备得到不断的研发升级,为获取更加准确可靠的试验数据提供了一定技术支持。针对海洋潮汐区环境条件,对流区深度、表面氯离子浓度、扩散系数和氯离子浓度峰值等参数是建立寿命预测模型的关键要素, 本文主要考虑这几方面的影响,分析总结了实海暴露环境下氯离子侵蚀规律,从实海暴露试验与室内模拟试验的角度出发,总结了海洋潮汐区环境混凝土抗氯盐侵蚀性能的研究进展,基于相似性理论分析探讨了氯盐侵蚀规律的相似性,并进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍玖文
庄智杰
张鹏
魏佳楠
高嵩
赵铁军
关键词:  海洋潮汐区环境  实海暴露  室内模拟  相似性  氯离子侵蚀    
Abstract: With the implementation of maritime power strategy in China, the marine infrastructure engineering construction is unprecedented in scale, and the durability of concrete materials in the coastal environment has gradually attracted people's attention. Chloride ingress is the main factor to cause the deterioration of the durability of reinforced concrete structures in marine environment. Therefore, the experimental research on chloride ion corrosion of concrete in coastal environment has attracted wide attention. The real sea exposure test has some disadvantages, such as large regional impact, poor popularization, long test period and complex influencing factors, which could not provide sufficient data basis for developing prediction model of service life. However, the shortcomings of the real sea exposure test can be effectively made up by the indoor simulation accelerated test. The similarity between the real sea exposure test and the indoor simulation test is used to establish prediction model of service life for marine structures. Further, the indoor simulation test results could be applied to accurately predict the service life of building structure in the field. There have been many researches on the similarity of chloride corrosion resistance between the real sea exposure test and the indoor simulation accelerated test, and some achievements have been achieved. On the one hand, the corresponding similarity model has been established, and then the corrosion law of chloride ion in concrete under the real sea exposure environment and artificial simulation environment has been analyzed and studied theoretically, which lays a certain theoretical foundation for the establishment of the life prediction model. On the other hand, the testing equipment has already been continuously developed and upgraded, which provides a certain technical support for obtaining more accurate and reliable test data. For the tidal environment, some parameters including convective zone depth, surface chloride ion concentration, diffusion coefficient, and peak chloride ion concentration are usually regarded as the key factors for the prediction model of service life, which are considered to analyze the ingress behavior of chloride ions. From the perspective of the real sea exposure test and the indoor simulation test, the research progress of the resistance to chloride corrosion within concrete exposed to marine tidal zone has been summarized. Based on the similarity theory, the similarity of chloride penetration into concrete is analyzed in depth, and the further discussion and prospect are presented.
Key words:  marine tidal environment    real sea exposure    indoor simulation    similarity    chloride ion erosion
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TU528.1  
基金资助: 国家自然科学基金(51922052;U1706222;51778309;51908307;51978353);山东省自然科学基金(ZR2018JL018);大连理工大学海岸和近海工程国家重点实验室开放课题基金资助项目(LP1902)
作者简介:  鲍玖文,青岛理工大学土木工程学院副教授。2018年6月在大连理工大学建设工程学部结构工程专业取得博士学位。主要从事海工混凝土耐久性方面的研究工作。近年来,在混凝土材料耐久性领域发表论文20余篇,包括Journal of Materials in Civil Engineering(ASCE)、Construction and Building Materials、Materials and Structures、Ocean Engineering、《建筑材料学报》和《水利学报》等期刊。
张鹏,青岛理工大学土木工程学院副院长、教授、博士研究生导师。国家优秀青年科学基金获得者,德国“洪堡学者”,从事土木工程材料测试技术、新型建筑材料、混凝土耐久性等领域研究工作。近年来,在混凝土材料耐久性领域发表论文50余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials、《材料导报》和《水利学报》等期刊。
赵铁军,青岛理工大学副教长、教授、博士研究生导师。“111计划”项目(高等学校学科创新引智基地)负责人。主要从事混凝土材料与性能研究,主持包括国家自然科学基金重点项目、重点国际合作项目、973计划课题等国家级重大课题。主持胶州湾海底隧道、青岛地铁等重大工程项目研究。发表论文100余篇,出版专著6部,主、参编国家和行业标准10余部,获国家科技进步二等奖等科技奖励近10项。
引用本文:    
鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
BAO Jiuwen, ZHUANG Zhijie, ZHANG Peng, WEI Jianan, GAO Song, ZHAO Tiejun. Research Progress of Chloride Corrosion Resistance of Concrete Exposed to Marine Tidal Environment Based on Similarity Theory. Materials Reports, 2021, 35(7): 7087-7095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110194  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7087
1 Liang S. Experimental studies on the influence of marine environment to concrete structure. Master's Thesis, Nanjing University of Science and Technology, China, 2006(in Chinese).
梁爽. 海洋环境对混凝土结构影响的试验研究. 硕士学位论文, 南京理工大学, 2006.
2 Zhang Q Z, Huang Q H, Zhang W P, et al. Structural Engineers, 2010, 26(3), 145(in Chinese).
张庆章, 黄庆华, 张伟平, 等. 结构工程师, 2010, 26(3), 145.
3 Sheng J S. Study on rust resistance type preparation of mineral admixtures and actually the sea exposure. Master's Thesis, Zhejiang University, China, 2016(in Chinese).
盛建松. 阻锈型矿物掺合料的制备及实海暴露试验研究. 硕士学位论文, 浙江大学, 2016.
4 Li Z, Zhu Y X, Cai W C, et al. Concrete, 2010(2), 25(in Chinese).
李震, 朱雅仙, 蔡伟成, 等. 混凝土, 2010(2),25.
5 Lu Z Y, Jin W L, Wang H L, et al. Journal of Zhejiang University (Engineering Science), 2009, 43(6), 1071(in Chinese).
卢振永, 金伟良, 王海龙, 等. 浙江大学学报(工学版), 2009, 43(6), 1071.
6 Li C H. Study on chloride ion corrosion mechanism and simulation of concrete under alternating wet and dry. Master's Thesis, Zhengzhou University, China, 2014(in Chinese).
李长贺. 干湿交替下氯离子在混凝土中传输机理及模型研究. 硕士学位论文, 郑州大学, 2014.
7 Zhang Z H, Wang A H. Shandong Industrial Technology, 2016(4),270(in Chinese).
张智慧, 王安辉. 山东工业技术, 2016(4),270.
8 Ding X Y. The transport mechanism of moisture and chloride ions in recycled concrete. Master's Thesis, Qingdao University of Technology, China, 2018(in Chinese).
丁小雅. 水分和氯离子在再生混凝土中的传输机理. 硕士学位论文, 青岛理工大学, 2018.
9 Yuan L Q. Numerical simulation and experimental study of chloride transport in unsaturated concrete. Master's Thesis, Hunan University of Science and Technology, China, 2016(in Chinese).
袁利强. 非饱和混凝土中氯离子传输规律研究. 硕士学位论文, 湖南科技大学, 2016.
10 Li J Q, Jin Z Q, Chen Y F. Concrete, 2017(5), 55(in Chinese).
李建强, 金祖权, 陈永丰. 混凝土, 2017(5), 55.
11 Yuan Y S, Zhang X S, Ji Y S. China Civil Engineering Journal, 2006, 39(3),42(in Chinese).
袁迎曙, 章鑫森, 姬永生. 土木工程学报, 2006, 39(3),42.
12 Liu S Q. Research on the action of transmission performance and the critical concentration of chloride ion in concrete under the dry-wet circulation environment. Master's Thesis, Xi'an University of Science and Techno-logy, China, 2014(in Chinese).
刘诗群. 干湿循环作用下混凝土中氯离子传输性能及临界浓度研究. 硕士学位论文, 西安建筑科技大学, 2014.
13 Sun C T, Liu S Q, Niu D T, et al. Journal of Building Materials, 2016, 19(2),385(in Chinese).
孙丛涛, 刘诗群, 牛荻涛, 等. 建筑材料学报, 2016, 19(2), 385.
14 Wei J, Wang T, Dong R Z, et al. Concrete, 2010(2), 4(in Chinese).
卫军, 王腾, 董荣珍, 等. 混凝土, 2010(2),4.
15 Hong K, Hooton R. Cement and Concrete Research, 1999, 29(9), 1379.
16 Gao Y, Zhang J, Zhang S, et al. Construction and Building Materials, 2017, 140, 485.
17 Bao J W. Influence of sustained loading and cracks on the transport pro-perties of water and chloride within concrete. Ph.D. Thesis, Dalian University of Technology, China, 2018(in Chinese).
鲍玖文. 持载及裂缝对混凝土中水分和氯离子传输性能的影响. 博士学位论文, 大连理工大学, 2018.
18 Xu T. Similarity method and its application, China Machine Press, China, 1995(in Chinese).
徐挺. 相似方法及其应用, 机械工业出版社, 1995.
19 Chen S B. Research and application on environment-time similarity model of chloride ion corrosion in pre-stressed structures under drying-wetting cycles. Master's Thesis, Jiangsu University, China, 2016(in Chinese).
陈素碧. 干湿交替区预应力混凝土构件氯离子传输的环境-时间相似模型及应用. 硕士学位论文, 江苏大学, 2016.
20 Jin W L. In: The 6th National Academic Forum of Civil Engineering Postgraduates. Beijing, 2008, pp. 10.
21 Liu P, Yu Z W, Lu Z H, Chen Y, Liu X J. Cement and Concrete Composites, 2016, 72,257.
22 Chang H, Mu S, Xie D, et al. Construction and Building Materials, 2017, 131,16.
23 Gao Y H, Zhao J, Zheng Y Y, et al. Journal of Natural Disasters, 2018, 27(5), 63(in Chinese).
高延红, 赵静, 郑盈盈, 等. 自然灾害学报, 2018, 27(5),63.
24 Liu P. Research on similarity of the chloride ingress in concrete under natural an artificial simulation environment. Ph.D. Thesis, Central South University, China, 2013(in Chinese).
刘鹏. 人工模拟和自然氯盐环境下混凝土氯盐侵蚀相似性研究. 博士学位论文, 中南大学, 2013.
25 Liu P, Song L, Yu Z W. Journal of South China University of Technology (Natural Science Edition), 2014, 42(2), 64(in Chinese).
刘鹏, 宋力, 余志武. 华南理工大学学报(自然科学版), 2014, 42(2), 64.
26 Jin L B. Multi-Environmental Time Similarity (METS) theory and its application in coastal concrete structural durability. Ph.D. Thesis, Zhejiang University, China, 2008(in Chinese).
金立兵. 多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用. 博士学位论文, 浙江大学, 2008.
27 Fan H, Zhao T J, Tian L, et al. Industrial Construction, 2006(8), 44(in Chinese).
范宏, 赵铁军, 田砾, 等. 工业建筑, 2006(8), 44.
28 Yu H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction. Ph.D. Thesis, Southeast University, China,2004(in Chinese).
余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法. 博士学位论文, 东南大学, 2004.
29 Kassir M K, Ghosn M. Cement and Concrete Research, 2002, 32(1),139.
30 Pack S W, Jung M S. Cement and Concrete Research, 2010, 40(2),302.
31 Zhou L P, Liu R G, Chen Y. Bulletin of the Chinese Ceramic Society, 2017, 36(3),803(in Chinese).
周丽萍, 刘荣桂, 陈妤. 硅酸盐通报, 2017, 36(3),803.
32 Tumidajski P J, Chan G W. Journal of Materials in Civil Engineering, 1996, 8(4), 195.
33 Dhir P K, Jones M R, Ng S L D. Magazine of Concrete Research, 1998, 50(1), 37.
34 Huang J. Study of similarity on simulation experiment considering chloride ion corrosion in cement-based material under the tidal zone. Master's Thesis, Zhejiang University of Technology, China, 2013(in Chinese).
黄俊. 潮差区水泥基材料氯离子侵蚀模拟试验的相似性研究. 硕士学位论文, 浙江工业大学, 2013.
35 Liu R T, Zhuang H X, Huang J, et al. Concrete, 2014(11), 24(in Chinese).
刘如泰, 庄华夏, 黄俊, 等. 混凝土, 2014(11), 24.
36 Maage M, Helland S, Poulson E, et al. ACI Materials Journal, 1996, 93(6), 602.
37 Hao X L. Durability and service life prediction of reinforced concrete structure exposed to chloride environments. Master's Thesis, Xi'an University of Science and Technology, China, 2004(in Chinese).
郝晓丽. 氯腐蚀环境混凝土结构耐久性与寿命预测. 硕士学位论文, 西安建筑科技大学, 2004.
38 Jiang W. Chloride ion ingress of the bending RC members and bending capacity of RC corroded members in tidal zone. Master's Thesis, Zhejiang University of Technology, China, 2017(in Chinese).
江维. 潮差环境下受弯RC构件氯离子侵蚀及锈蚀构件的抗弯性能. 硕士学位论文, 浙江工业大学, 2017.
39 Shi J L. Experimental study on chloride penetration in cement-based materials under different dry-wet cycling environments and similarities analysis. Master's Thesis, Zhejiang University of Technology, China, 2015(in Chinese).
石佳乐. 不同干湿循环环境下水泥基材料抗氯离子侵蚀试验及相似性. 硕士学位论文, 浙江工业大学, 2015.
40 Thomas M D, Bamforth P B. Cement and Concrete Research, 1999, 29(4), 487.
41 Thomas M D A, Bentz E C. Life-365 computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides. ACI Committee 365, USA, 2000.
42 Yu H F, Sun W, Yan L H, et al. Journal of the Chinese Ceramic Society, 2002, 30(6), 686(in Chinese).
余红发, 孙伟, 鄢良慧, 等. 硅酸盐学报,2002,30(6), 686.
43 Mangat P S, Molloy B T. Material and Structures, 1994, 27(6),338.
44 Tang L, Joost G. Cement and Concrete Research, 2007, 37(4), 589.
45 Gao Y H, Zhuang H X, Li X Z, et al. Yangtze River, 2013, 44(20), 46(in Chinese).
高延红, 庄华夏, 李西宗, 等. 人民长江, 2013, 44(20), 46.
46 Chen W. Time-varying similarity and micro mechanism of chloride ion penetration in cement-based materials in simulation tidal environment. Master's Thesis, Zhejiang University of Technology, China, 2016(in Chinese).
陈伟. 模拟潮差环境下水泥基材料氯离子渗透时变相似性及微观机理. 硕士学位论文, 浙江工业大学, 2016.
47 Jin H Y. Study on penetration experiment of RC flexural members under chloride environment in the tidal zone. Master's Thesis, Zhejiang University of Technology, China, 2014(in Chinese).
金汉阳. 潮差区氯盐环境下钢筋混凝土受弯构件的侵蚀试验研究. 硕士学位论文, 浙江工业大学, 2014.
48 Liu R T. Study on experiment of bending load RC members under chloride environment and corrosion of steel bar in the tidal zone. Master's Thesis, Zhejiang University of Technology, China, 2015(in Chinese).
刘如泰. 潮差区受弯混凝土氯离子侵蚀及钢筋锈蚀试验研究. 硕士学位论文, 浙江工业大学, 2015.
49 Sun W K. The chloride ion erosion of RC members under flexural loads and the similarity of simulation test in tidal range. Master's Thesis, Zhejiang University of Technology, China, 2016(in Chinese).
孙玮琨. 潮差区受弯RC构件的氯离子侵蚀及模拟试验的相似性. 硕士学位论文, 浙江工业大学, 2016.
50 Li Y F. Research on environmental simulation test technology and its relative theory of concrete structures. Ph.D. Thesis, Hohai University, China, 2005(in Chinese).
李云峰. 混凝土结构环境模拟试验技术及相关理论研究. 博士学位论文, 河海大学, 2005.
51 金伟良, 许晨. 中国专利, CN101871877A. 2010.
52 顾祥林, 张庆章, 黄庆华, 等. 中国专利, CN 201844965U. 2011.
53 Zhang Q Z, Huang Q H, Zhang W P, et al. Research an Exploration in Laboratory, 2011, 30(8), 4(in Chinese).
张庆章, 黄庆华, 张伟平, 等. 实验室研究与探索, 2011, 30(8), 4.
54 Fu C Q, Jin X Y, Jin N G. Research an Exploration in Laboratory, 2014, 33(4), 54(in Chinese).
付传清, 金贤玉, 金南国. 实验室研究与探索, 2014, 33(4), 54.
55 Wang Z J. Studies on the environmental simulation test scheme of concrete bridge structures and the loading device. Master's Thesis, Chang' an University, China, 2017(in Chinese).
王振佳. 混凝土桥梁结构环境模拟试验方案及加载装置研究. 硕士学位论文, 长安大学, 2017.
56 Gao Y, Zhang J, Sun W. Journal of Tsinghua University (Science and Technology), 2012, 52(2), 144(in Chinese).
高原, 张君, 孙伟. 清华大学学报(自然科学版),2012,52(2),144.
57 Zhang Y M, Chen S X, Gao Y Y. Journal of Building Materials, 2005, 8(6), 665(in Chinese).
张亚梅, 陈胜霞, 高岳毅. 建筑材料学报, 2005, 8(6), 665.
58 Lu Z Y. Artificial accelerated test method simulating chloride ingress environment. Master's Thesis, Zhejiang University, China, 2007(in Chinese).
卢振永. 氯盐腐蚀环境的人工模拟试验方法. 硕士学位论文, 浙江大学, 2007.
59 Zhuang H X. Study on experiment of chloride ion erosion and initial corrosion time of steel bar in concrete under the tidal area. Master's Thesis, Zhejiang University of Technology, China, 2014(in Chinese).
庄华夏. 潮差区混凝土氯离子侵蚀试验及钢筋初锈时间研究. 硕士学位论文, 浙江工业大学, 2014.
60 Amey S L, Johnson D A, Miltenberger M A, et al. ACI Structural Journal, 1998, 95(2),205.
61 Zhang J Z, Wang J Z, Kong D Y, et al. Hydro-Science and Engineering, 2010(2), 14(in Chinese).
张俊芝, 王建泽, 孔德玉, 等. 水利水运工程学报, 2010(2),14.
62 Anna V S. Roberto V S. Renato V V. ACI Material Journal, 1993, 90(5), 441.
63 Bažant Z P, Najjar L J. Matériaux et Constructions, 1972, 5(1), 3.
64 Zhang T W, Gjørv O E. ACI Materials Journal, 2005, 102(5), 295.
[1] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed