Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7071-7076    https://doi.org/10.11896/cldb.19050138
  无机非金属及其复合材料 |
超临界流体制备氮化硼纳米片的研究进展
白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞
湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
Research Progress on Preparation of Boron Nitride Nanosheets by Supercritical Fluid
BAI Yang, XU Chengcheng, ZHAO Yang, ZHANG Rong, LIU Qingting, FU Xudong, HU Shengfei
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 2402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化硼纳米片(BNNSs)是一种新型二维纳米材料,具有极好的绝缘导热性能、力学性能、介电性能、化学稳定性和良好的生物相容性,被广泛应用于复合材料增强、导热复合材料、储氢、药物运输、催化载体、量子点等方面,逐渐成为研究的热点。氮化硼主要有六方(h-BN)、立方(c-BN)、菱方(r-BN)和纤维矿(w-BN)四种稳定结构,其中h-BN是与石墨相类似的层状结构,但其层间范德华力更强,这也给其剥离带来困难。迄今为止,人们参照石墨烯的制备探究出许多制备氮化硼纳米材料的方法,如微机械剥离法、液相剥离法、化学气相沉积法(CVD)和二次外延生长法等。这些方法虽各有优劣,但在大规模稳定生产晶体结构较为完整的BNNSs且剥离效率较高上均存在不足。采用低成本、高效率、高质量的方法制备出氮化硼纳米片是其产业化的关键。超临界流体兼具气体的扩散性质和液体的溶解能力,自从被引入到石墨烯的制备中取得了一些成果后,许多研究者也将其运用到BNNSs的制备上。目前,利用超临界CO2在一定的温度和压力下能制备出厚度为2~6 nm的BNNSs,且BNNSs的结晶形态与原始的h-BN基本没有太大差异,得到的BNNSs悬浮液的浓度可高达0.24 mg/mL,辅助以剪切、超声波等手段后能有效提高其剥离效率。超临界有机溶剂一般有超临界甲醇、超临界N,N-二甲基甲酰胺,它们不仅能作为插层剂打开片层间距,而且是良好的分散剂,能防止纳米材料再次团聚。超临界有机溶剂能大大简化剥离过程,反应时间只有短短15 min,就能得到2~3层的无明显缺陷的BNNSs,产率约为10%。本文综述了超临界流体制备氮化硼纳米片的方法、原理、研究现状及其表征手法,讨论了提高剥离效率的各种方法及优缺点。超临界流体制备氮化硼纳米片设备单一、条件较易达成、产品质量高,为氮化硼纳米片的工业化生产提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白央
徐成成
赵洋
张荣
刘清亭
付旭东
胡圣飞
关键词:  氮化硼纳米片  超临界流体  超临界二氧化碳    
Abstract: As a new type of two-dimensional nanomaterials, boron nitride nanosheets have excellent thermally conductive, electric insulating, mechanical properties and biocompatibility. It has gradually become a research focus, because of its extensive applications in composite reinforcement, thermally conductive composites, hydrogen storage, drug transport, catalytic carriers, quantum dots, etc. Boron nitride has four crystalline forms: hexagonal (h-BN), cubic (c-BN), rhombohedral (r-BN) and fiber mineral (w-BN). Among the four phases, h-BN is the most stable under standard conditions and is a sp2-hybridized 2D-layered insulator. However, the van der Waals force is stronger than that of graphite, which makes it difficult to peel. Till now, many methods for preparing boron nitride nanomaterials have been explored, such as micromechanical peeling, liquid phase peeling, chemical vapor deposition (CVD), and secondary epitaxial growth, which were referenced graphene preparation method. Although these methods have their own advantages and disadvantages, there are certain problems in large-scale stable production of BNNSs with relatively complete crystal structures and high stripping efficiency. How to prepare BNNSs with low cost, high efficiency and high quality is the key to its industrialization. Supercritical fluids have both the diffusive properties of gases and the ability to dissolve liquids. Since they were introduced into the preparation of graphene and have achieved some results, many researchers have also applied them to the preparation of BNNSs. At present, BNNSs with a thickness of 2—6 nm can be prepared by using supercritical CO2 at a certain temperature and pressure, and the crystal form of BNNSs is the same as the original h-BN. The concentration of the obtained BNNSs suspension can be as high as 0.24 mg/mL. It can effectively improve its peeling efficiency after being assisted by means of shearing and ultrasound. Supercritical organic solvents include supercritical methanol and supercritical N, N-dimethylformamide, which can not only open the interlayer distance as an intercalating agent, but they can also be a good dispersant to prevent nanomaterials from agglomerating again. Supercritical organic solvents can greatly simplify the stripping process. 2 to 3 layers of BNNSs without obvious defects can be obtained after 15 minutes, which has about 10% yield. In this review, we first describe the methods, principles, research status, and characterization methods of preparing BNNSs by supercritical fluid, and discusses various methods and advantages and disadvantages of improving stripping efficiency. The equipment for preparing boron nitride nanosheets by supercritical fluid is simple, the conditions are easy to achieve, and the product quality is high, which provides new ideas for the industrial production of boron nitride nanosheets.
Key words:  boron nitride nanosheets    supercritical fluid    supercritical carbon dioxide
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TB321  
基金资助: 湖北省科技支撑计划(2015BAA094)
作者简介:  白央,2017年七月毕业于湖北工业大学,获得工学学士学位。现为湖北工业大学材料工程与化学学院硕士研究生,在胡圣飞教授指导下进行研究,目前主要研究方向为聚合物基绝缘导热复合材料。
胡圣飞,湖北工业大学教授,湖北省产业教授,湖北省有突出贡献中青年专家,武汉市黄鹤英才,主要研究领域为聚合物绿色改性与加工、聚合物轻量化、导电高分子材料。主持完成的“聚合物绿色改性与加工关键技术及产业化”获湖北省科技进步一等奖,获授权发明专利11项,发表科技论文60余篇。主持包括国家自然科学基金、湖北省重大专项及企业合作项目30余项,取得了巨大的经济效益和社会效益。
引用本文:    
白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
BAI Yang, XU Chengcheng, ZHAO Yang, ZHANG Rong, LIU Qingting, FU Xudong, HU Shengfei. Research Progress on Preparation of Boron Nitride Nanosheets by Supercritical Fluid. Materials Reports, 2021, 35(7): 7071-7076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050138  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7071
1 Golberg D, Bando Y, Huang Y, et al. ACS Nano, 2010, 4(6),2979.
2 Venkatesh V, Liangchi Z. Nanomaterials, 2018, 8(7),546.
3 Ye H, Lu T, Xu C, et al. Nanotechnology, 2017, 29(9),095702.
4 Zeng X, Ye L, Yu S, et al. Chemistry of Materials, 2015, 27(17),5849.
5 Huang X, Jiang P, Tanaka T. IEEE Electrical Insulation Magazine, 2011, 27(4),8.
6 Cuiping Y, Jun Z, Wei T, et al. RSC Advances, 2018, 8(39),21948.
7 Zhang L, Deng H, Fu Q. Composites Communications, 2018, 8,74.
8 Jin Z, Wei L, Jin C, et al. Polymer, 2018, 148,101.
9 Kim K K, Hsu A, Jia X, et al. ACS Nano, 2012, 6(10),8583.
10 Chatterjee S, Luo Z, Acerce M, et al. Chemistry of Materials, 2011, 23(20),4414.
11 A-Rang J, Seokmo H, Chohee H, et al. Nano Letters, 2016, 16(5),3360.
12 Chun-Ho L, Hui-Chun F, Bin C, et al. NPJ 2D Materials and Applications, 2018, 2(1),23.
13 Mengjie W, Zhaoyong J, Yapeng C, et al. Composites Part A Applied Science & Manufacturing, 2018, 109,321.
14 Xian W, Wei L, Chun Z, et al. European Polymer Journal, 2018,100,12.
15 Pu N W, Wang C A, Sung Y, et al. Materials Letters, 2009, 63(23),1987.
16 Wu B, Yang X. Journal of Colloid & Interface Science, 2011, 361(1),1.
17 Ju S A, Kim K, Kim J H, et al. ACS Applied Materials & Interfaces, 2011, 3(8),2904.
18 Thangasamy P, Partheeban T, Sudanthiramoorthy S, et al. Langmuir, 2017, 33(24),6159.
19 Thangasamy P, Marappan S. New Journal of Chemistry, 2018, 42(7),5090.
20 Tian X, Li Y, Chen Z, et al. Scientific Reports, 2017, 7(1),17794.
21 Wang N, Xu Q, Xu S, et al. Scientific Reports, 2015, 5,16764.
22 Tong X, Du L, Xu Q. Journal of Materials Chemistry A, 2018, 6(7),3091.
23 Chen M. The exfoliation of graphene-analogous two-dimensional materials (BN, MoO3) with the assistant of supercritical CO2 and further application. Master's Thesis, Zhengzhou University, China, 2016(in Chinese).
陈梦. 超临界二氧化碳辅助剥离类石墨烯二维材料(BN、MoO3)及其功能化应用. 硕士学位论文, 郑州大学, 2016.
24 Wang X, Wu P. Chemical Engineering Journal, 2018,172(2-3), 723.
25 Kim K, Kim J. Composites Part B Engineering, 2018, 140,9.
26 Tan C, Yu P, Hu Y, et al. Journal of the American Chemical Society, 2015, 137(32),10430.
27 Li X, Dai Y, Row K H. Analyst, DOI: 10.1039/c8an02258e.
28 Ren L, Qi X, Liu Y, et al. Journal of Materials Chemistry, 2012, 22,4921.
29 Li C, Wang T L, Wu Y Z, et al. Nanotechnology, 2014, 25,495302.
30 Fu L, Wang T, Yu J H, et al. 2D Materials, 2017, 4, 025047.
31 Li Y, Tian X, Yang W, et al. Chemical Engineering Journal, 2018, 358, 718.
32 Song X L, Li G H, Huang D, et al. Modern Chemical Industry, 2018, 38(9),170(in Chinese).
宋晓玲, 李国华, 黄迪,等. 现代化工, 2018, 38(9),170.
33 Wang Y, Zhou C, Wang W, et al. Industrial & Engineering Chemistry Research, 2013, 52(11),4379.
34 Ye H, Lu T, Xu C, et al. Nanotechnology, 2017, 29(9),095702.
35 Atar N, Yola M L. Journal of the Electrochemical Society, 2018, 165(5),255.
36 Aldalbahi A, Rivera M, Rahaman M, et al. Nanomaterials, 2017, 7(12),454.
37 Yang H, Hernandez Y, Schlierf A, et al. Carbon, 2013, 53(3),357.
38 Wang W, Wang Y, Gao Y, et al. The Journal of Supercritical Fluids, 2014, 85,95.
39 Gao Y, Shi W, Wang W, et al. Industrial & Engineering Chemistry Research, 2014, 53(7),2839.
40 Hu S F, Wei W M, Qing T L, et al. Journal of Materials Engineering, 2017, 45(3),28.
胡圣飞, 魏文闵, 刘清亭,等. 材料工程, 2017, 45(3),28.
41 Thangasamy P, Sathish M. CrystEngComm, 2015, 17(31),5895.
42 Hu Y T. The study in the exfoliation of graphene in supercritical carbon dioxide system. Master's Thesis, Shandong University, China, 2014(in Chinese).
胡玉婷. 在超临界二氧化碳体系中石墨烯剥离技术的研究. 硕士学位论文, 山东大学, 2014.
43 Li L H. Preparation and function of graphene with assistance of supercritical carbon dioxide and their application in fuel cells. Master's Thesis, Zhengzhou University, China, 2013(in Chinese).
李利花. 超临界二氧化碳辅助石墨烯的制备、功能化及在燃料电池中的应用. 硕士学位论, 郑州大学, 2013.
44 Sim H S, Kim T A, Lee K H, et al. Materials Letters, 2012, 89(25),343.
45 Tomai T, Kawaguchi Y, Honma I. Applied Physics Letters, 2012, 100,233110.
46 Katsnelson M I, Roth S, Meyer J C, et al. Solid State Communications, 2007, 143(1),101.
47 Knieke C, Berger A, Voigt M, et al. Carbon, 2010, 48(11),3196.
48 Zheng X, Xu Q, Li J, et al. RSC Advances, 2012, 2(28),10632.
49 Thangasamy P, Santhanam M, Sathish M. ACS Applied Materials & Interfaces, 2016, 8(29),18647.
50 Wu B, Yang X. Journal of Colloid and Interface Science, 2011, 361(1),1.
51 Bhimanapati G R, Kozuch D, Robinson J A. Nanoscale, 2014, 6(20),11671.
52 Wang X, Zhi C, Weng Q, et al. Science & Engineering Faculty, 2013, 471(1),012003.
53 Du M, Wu Y, Hao X, et al. CrystEngComm, 2013, 15(9),1782.
54 Danae G O, Celine P, Julien G, et al. Nanomaterials, 2018, 8(9),716.
55 Li L H, Cervenka J, Watanabe K, et al. ACS Nano, 2014, 8(2),1457.
56 Gorbachev R V, Riaz I, Nair R, et al. Small, 2011, 7(4),465.
[1] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[2] 翟佳欣, 李国华, 甘思平, 胡恩言, 张晓蕊. Mo掺杂对CuCo/BNNSs纳米复合材料催化氨硼烷水解活性的影响[J]. 材料导报, 2020, 34(16): 16031-16036.
[3] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[4] 王景昌, 赵宇, 苗宏雨, 赵启成, 詹世平. 超临界二氧化碳辅助制备β-环糊精-药物包合物的研究进展[J]. 材料导报, 2019, 33(Z2): 542-546.
[5] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[6] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[7] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[8] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed