Abstract: Li-rich layered metal oxides Li[Li0.2Mn0.54Co0.13Ni0.13]O2(LMCN) are recognized as one of the most ideal cathode materials for high energy density lithium-ion batteries. Nevertheless, LMCN suffers from high irreversible capacity for the first time, short cycling life and serious voltage attenuation caused by structure collapse. Consequently, an effective strategy, namely a process of coating LiMnPO4 (LMP) by assistance of supercritical CO2 was put forward to enhance the property of LMCN. The impact of LMP coating content on the structure and electrochemical lithium-storage properties of LMP-LMCN samples are explored. It could be found that the LMP3-LMCN sample with 3wt% LMP presented high initial Coulombic efficiency of 81.1%, favorable capacity retention of 79.2% with low voltage fading of 0.47 V after 100 cycles at 30 mA·g-1, and excellent rate capacity of 88.76 mAh·g-1 even at a high current density of 1 500 mA·g-1, which is much better than pristine LMCN.
黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties. Materials Reports, 2018, 32(23): 4072-4078.
1 Armand M, Tarascon J M.Building better batteries[J].Nature,2008,451:652. 2 Fan J, Li G, Luo D, et al.Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries[J].Electrochimica Acta,2015,173:7. 3 Croy J R, Abouimrane A, Zhang Z.Next-generation lithium-ion batteries: The promise of near-term advancements[J].MRS Bulletin,2014,39:407. 4 Li J W, Li Y, Kong Y Z.Recent progress in core-shell ternary cat-hode material for lithium-ion battery[J].Materials Review,2016,30(Z1):187(in Chinese). 李佳玮,厉英,孔亚州.核壳结构三元锂离子电池正极材料研究进展[J].材料导报,2016,30(Z1):187. 5 Liu H, Fell C R, An K, et al.In-situ neutron diffraction study of the xLi2MnO3·(1-x)LiMO2(x=0,0.5;M=Ni,Mn,Co) layered oxide compounds during electrochemical cycling[J].Journal of Power Sources,2013,240:772. 6 Goodenough J B, Kim Y.Challenges for rechargeable Li batteries[J].Chemistry of Materials,2010,22(3):587. 7 Xue J Y, Hou B, Mo Y, et al.PVDF-HFP based gel electrolyte for lithium-ion battery with LiNi0.5Co0.2Mn0.3O2 cathode[J].Materials Review B:Research Papers,2017,31(6):6(in Chinese). 薛景元,侯博,莫岩,等.PVDF-HFP基凝胶电解质用于LiNi0.5Co0.2-Mn0.3O2三元正极锂离子电池[J].材料导报:研究篇,2017,31(6):6. 8 Xia Q B, Zhao X F, Xu M Q, et al.A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J].Journal of Materials Chemistry A,2015,3(7):3995. 9 Arunkumar T A, Wu Y, Manthiram A.Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3-Mn2/3]O2-Li[M]O2(M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions[J].Chemistry of Materials,2007,19(12):3067. 10 Xu M, Fei L, Lu W, et al.Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application[J].Nano Energy,2017,35:271. 11 Thackeray M M, Kang S H, Jnhnson C S, et al.Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J].Electrochemistry Communications,2006,8(9):1531. 12 Croy J R, Balasubramanian M, Galagher K G, et al.Review of the U.S. department of energy’s "deep dive" effort to understand vol-tage fade in Li- and Mn-rich cathodes[J].Accounts of Chemical Research,2015,48(11):2813. 13 Kim T, Song B H, Lunt A J G, et al. In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode[J].Materials & Design,2016,98:231. 14 Gan Y P, Lin P P, Huang H, et al.Effects of surfactants on Al2O3-modified Li-rich layered metal oxide cathode materials for advanced Li-ion batteries[J].Acta Physico-Chimica Sinica,2017,33(6):1189(in Chinese). 甘永平,林沛沛,黄辉,等.表面活性剂对氧化铝修饰富锂锰基正极材料的影响[J].物理化学学报,2017,33(6):1189. 15 Qin C C, Cao J L, Chen J, et al.Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultra thin TiO2 coating[J].Dalton Transactions,2016,45(23):9669. 16 Shi S J, Tu J P, Zhang Y J, et al.Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J].Electrochimica Acta,2013,108:441. 17 Cho W, Kim S M, Song J H, et al.Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J].Journal of Power Sources,2015,282:45. 18 Sun Y K, Lee M J, Yoon C S, et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J].Advanced Materials,2012,24:1192. 19 Liu S, Wu H, Huang L, et al.Synthesis of Li2Si2O5-coated LiNi0.6-Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries[J].Journal of Alloys and Compounds,2016,674:447. 20 Li G, Azuma H, Tohda M.Optimized LiMnyFe1-yPO4 as the cat-hode for lithium batteries[J].Journal of the Electrochemical Society,2002,149(6):A743. 21 Wang C, Li S, Han Y, et al.Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batte-ries[J].ACS Applied Materials & Interfaces,2017,9(33):27618. 22 Choi D, Wang D, Bae I T, et al.LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J].Nano Letters,2010,10(8):2799. 23 Qiao Q Q, Zhang H Z, Li G R, et al.Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with LiMnPO4 as the cathode for lithium-ion batteries[J].Journal of Materials Chemistry A,2013,1:5262. 24 Leeke G A, Lu T, Bridson R H, et al.Application of nano-particle coatings to carrier particles using an integrated fluidized bed supercritical fluid precipitation process[J].The Journal of Supercritical Fluids,2014,91:7. 25 Liu J, Wang Q, Reeja-jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J].Journal of Mate-rials Chemistry,2010,12(6):750. 26 Hwang B J, Tsai Y W, Carlier D, et al.A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2[J].Chemistry of Materials,2003,15(19):3676. 27 Wang M, Luo M, Chen Y, et al.A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment[J].Journal of Alloys and Compounds,2017,696:891. 28 Jiang X Y, Chu S Y, Chen Y B, et al.LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique[J].Journal of Alloys and Compounds,2017,691:206. 29 Chu S Y, Wei S Y, Chen Y B, et al.Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cat-hode material in sodium-ion batteries with improved cycle stability[J].Ceramics International,2018,44:5184. 30 Lu Z, Beaulieu L Y, Donaaberger R A, et al.Synthesis, structure, and electrochemical behavior of Li-[NixLi1/3-2x/3Mn2/3-x/3]O2[J].Journal of the Electrochemical Society,2002,149(6):A778. 31 Chen S, Zheng Y, Lu Y, et al.Enhanced electrochemical perfor-mance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands[J].ACS Applied Materials & Interfaces,2017,9(10):8669. 32 Zhang X, Luo D, Li G, et al.Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li0.14Mn0.47Ni0.25Co0.14]O2 for lithium-ion batteries[J].Journal of Materials Chemistry A,2013,1(34):9721.