Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4072-4078    https://doi.org/10.11896/j.issn.1005-023X.2018.23.007
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能
黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁
浙江工业大学材料科学与工程学院,杭州 310014
Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties
HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 2974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富锂锰Li[Li0.2Mn0.54Co0.13Ni0.13]O2(LMCN)是新一代高能量密度锂电池的理想正极材料,但存在首次不可逆容量高、循环寿命短以及电压衰减严重等问题。为此,本研究提出了一种可有效改善富锂锰性能的超临界表面包覆磷酸锰锂(LMP)工艺,探讨了不同包覆量对富锂锰材料结构和电化学储锂性能的影响。结果表明,LMP包覆量为3%(质量分数)的LMP3-LMCN样品,在30 mA·g-1电流密度下,首次库伦效率高达81.1%,经过100次充放电后循环容量保持率为79.2%,并且电压衰减仅为0.47 V,在1 500 mA·g-1电流密度下容量为88.76 mAh·g-1,明显优于纯相富锂锰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄辉
韩健峰
王奕顺
夏阳
张俊
甘永平
梁初
张文魁
关键词:  锂离子电池  富锂锰  磷酸锰锂  超临界二氧化碳  表面包覆    
Abstract: Li-rich layered metal oxides Li[Li0.2Mn0.54Co0.13Ni0.13]O2(LMCN) are recognized as one of the most ideal cathode materials for high energy density lithium-ion batteries. Nevertheless, LMCN suffers from high irreversible capacity for the first time, short cycling life and serious voltage attenuation caused by structure collapse. Consequently, an effective strategy, namely a process of coating LiMnPO4 (LMP) by assistance of supercritical CO2 was put forward to enhance the property of LMCN. The impact of LMP coating content on the structure and electrochemical lithium-storage properties of LMP-LMCN samples are explored. It could be found that the LMP3-LMCN sample with 3wt% LMP presented high initial Coulombic efficiency of 81.1%, favorable capacity retention of 79.2% with low voltage fading of 0.47 V after 100 cycles at 30 mA·g-1, and excellent rate capacity of 88.76 mAh·g-1 even at a high current density of 1 500 mA·g-1, which is much better than pristine LMCN.
Key words:  Li-ion battery    Li-rich layered metal oxide    LiMnPO4    supercritical CO2    surface modification
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  O646  
基金资助: 国家自然科学基金(51572240; 51677170); 浙江省自然科学基金(LY16E070004; LY17E020010; LY18B030008); 美国福特汽车公司大学研究项目
作者简介:  黄辉: 男,1971年生,博士,教授,博士研究生导师,主要从事新型二次电池材料研究 E-mail:msechem@zjut.edu.cn
引用本文:    
黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties. Materials Reports, 2018, 32(23): 4072-4078.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.007  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4072
1 Armand M, Tarascon J M.Building better batteries[J].Nature,2008,451:652.
2 Fan J, Li G, Luo D, et al.Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries[J].Electrochimica Acta,2015,173:7.
3 Croy J R, Abouimrane A, Zhang Z.Next-generation lithium-ion batteries: The promise of near-term advancements[J].MRS Bulletin,2014,39:407.
4 Li J W, Li Y, Kong Y Z.Recent progress in core-shell ternary cat-hode material for lithium-ion battery[J].Materials Review,2016,30(Z1):187(in Chinese).
李佳玮,厉英,孔亚州.核壳结构三元锂离子电池正极材料研究进展[J].材料导报,2016,30(Z1):187.
5 Liu H, Fell C R, An K, et al.In-situ neutron diffraction study of the xLi2MnO3·(1-x)LiMO2(x=0,0.5;M=Ni,Mn,Co) layered oxide compounds during electrochemical cycling[J].Journal of Power Sources,2013,240:772.
6 Goodenough J B, Kim Y.Challenges for rechargeable Li batteries[J].Chemistry of Materials,2010,22(3):587.
7 Xue J Y, Hou B, Mo Y, et al.PVDF-HFP based gel electrolyte for lithium-ion battery with LiNi0.5Co0.2Mn0.3O2 cathode[J].Materials Review B:Research Papers,2017,31(6):6(in Chinese).
薛景元,侯博,莫岩,等.PVDF-HFP基凝胶电解质用于LiNi0.5Co0.2-Mn0.3O2三元正极锂离子电池[J].材料导报:研究篇,2017,31(6):6.
8 Xia Q B, Zhao X F, Xu M Q, et al.A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J].Journal of Materials Chemistry A,2015,3(7):3995.
9 Arunkumar T A, Wu Y, Manthiram A.Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3-Mn2/3]O2-Li[M]O2(M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions[J].Chemistry of Materials,2007,19(12):3067.
10 Xu M, Fei L, Lu W, et al.Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application[J].Nano Energy,2017,35:271.
11 Thackeray M M, Kang S H, Jnhnson C S, et al.Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J].Electrochemistry Communications,2006,8(9):1531.
12 Croy J R, Balasubramanian M, Galagher K G, et al.Review of the U.S. department of energy’s "deep dive" effort to understand vol-tage fade in Li- and Mn-rich cathodes[J].Accounts of Chemical Research,2015,48(11):2813.
13 Kim T, Song B H, Lunt A J G, et al. In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode[J].Materials & Design,2016,98:231.
14 Gan Y P, Lin P P, Huang H, et al.Effects of surfactants on Al2O3-modified Li-rich layered metal oxide cathode materials for advanced Li-ion batteries[J].Acta Physico-Chimica Sinica,2017,33(6):1189(in Chinese).
甘永平,林沛沛,黄辉,等.表面活性剂对氧化铝修饰富锂锰基正极材料的影响[J].物理化学学报,2017,33(6):1189.
15 Qin C C, Cao J L, Chen J, et al.Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultra thin TiO2 coating[J].Dalton Transactions,2016,45(23):9669.
16 Shi S J, Tu J P, Zhang Y J, et al.Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J].Electrochimica Acta,2013,108:441.
17 Cho W, Kim S M, Song J H, et al.Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J].Journal of Power Sources,2015,282:45.
18 Sun Y K, Lee M J, Yoon C S, et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J].Advanced Materials,2012,24:1192.
19 Liu S, Wu H, Huang L, et al.Synthesis of Li2Si2O5-coated LiNi0.6-Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries[J].Journal of Alloys and Compounds,2016,674:447.
20 Li G, Azuma H, Tohda M.Optimized LiMnyFe1-yPO4 as the cat-hode for lithium batteries[J].Journal of the Electrochemical Society,2002,149(6):A743.
21 Wang C, Li S, Han Y, et al.Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batte-ries[J].ACS Applied Materials & Interfaces,2017,9(33):27618.
22 Choi D, Wang D, Bae I T, et al.LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J].Nano Letters,2010,10(8):2799.
23 Qiao Q Q, Zhang H Z, Li G R, et al.Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with LiMnPO4 as the cathode for lithium-ion batteries[J].Journal of Materials Chemistry A,2013,1:5262.
24 Leeke G A, Lu T, Bridson R H, et al.Application of nano-particle coatings to carrier particles using an integrated fluidized bed supercritical fluid precipitation process[J].The Journal of Supercritical Fluids,2014,91:7.
25 Liu J, Wang Q, Reeja-jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J].Journal of Mate-rials Chemistry,2010,12(6):750.
26 Hwang B J, Tsai Y W, Carlier D, et al.A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2[J].Chemistry of Materials,2003,15(19):3676.
27 Wang M, Luo M, Chen Y, et al.A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment[J].Journal of Alloys and Compounds,2017,696:891.
28 Jiang X Y, Chu S Y, Chen Y B, et al.LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique[J].Journal of Alloys and Compounds,2017,691:206.
29 Chu S Y, Wei S Y, Chen Y B, et al.Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cat-hode material in sodium-ion batteries with improved cycle stability[J].Ceramics International,2018,44:5184.
30 Lu Z, Beaulieu L Y, Donaaberger R A, et al.Synthesis, structure, and electrochemical behavior of Li-[NixLi1/3-2x/3Mn2/3-x/3]O2[J].Journal of the Electrochemical Society,2002,149(6):A778.
31 Chen S, Zheng Y, Lu Y, et al.Enhanced electrochemical perfor-mance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands[J].ACS Applied Materials & Interfaces,2017,9(10):8669.
32 Zhang X, Luo D, Li G, et al.Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li0.14Mn0.47Ni0.25Co0.14]O2 for lithium-ion batteries[J].Journal of Materials Chemistry A,2013,1(34):9721.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[4] 杨果,马壮,杨绍斌,董伟,沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[5] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[6] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[7] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[8] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[9] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[10] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[11] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[12] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[13] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[14] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[15] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed