Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3547-3551    https://doi.org/10.11896/cldb.18050235
  材料与可持续发展(二)――材料绿色制造与加工* |
聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善
杨晨光1,2, 赵全1, 张茂江1,2, 邢哲1, 吴国忠1
1 中国科学院上海应用物理研究所,上海 201800
2 中国科学院大学,北京 100049
Improving Cellular Structure and Property of Supercritical CO2 Foamed ofPolypropylene via the Addition of PTFE Micropowder
YANG Chenguang1,2, ZHAO Quan1, ZHANG Maojiang1,2, XING Zhe1, WU Guozhong1
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2 University of China Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 19885KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过挤出制备了三种不同聚四氟乙烯微粉(PTFE)含量(1.0%、5.0%、10.0%,质量分数)的聚丙烯/聚四氟乙烯(PP/PTFE)共混物样品,采用超临界二氧化碳(scCO2)作为物理发泡剂对样品进行间歇发泡,研究了发泡样品的微观泡孔结构,并分析其形成机理。结果表明:挤出剪切作用下由分散PTFE为原料制造的微粉可以变成具有一定长径比的纤维状,并相互缠结形成网状结构,进而显著增加PP的熔体强度。流变性能测试结果表明,在低频区PP/PTFE复数黏度增强更加明显;制备的PP/PTFE发泡材料具有良好的微孔结构,泡孔均匀性明显改善,且随着PTFE添加量的增加,发泡材料孔径变小(平均值约31 μm),孔密度增加10倍,达到7.4×108 cells/cm3,这归因于在发泡过程中PTFE颗粒增强PP异相成核且较高的熔体强度保证了完整泡孔的形成。相比于纯PP泡沫材料,PP/PTFE(1.0%)泡沫具有较大的发泡倍率,发泡倍率可达8倍,拉伸应力从原来6 MPa增加到11 MPa,断裂伸长率从107%增加到230%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晨光
赵全
张茂江
邢哲
吴国忠
关键词:  PP/PTFE共混物  超临界二氧化碳发泡  微孔形貌  熔体强度  拉伸强度    
Abstract: Well-defined cellular structure of isotactic polypropylene (PP) foams with outstanding properties were prepared via supercritical carbon dio-xide (scCO2) foaming of iPP blended with a small amount of polytetrafluoroethylene (PTFE) micropowder. PP/PTFE blend samples with PTFE contents of 1.0wt%, 5.0wt% and 10.0wt% were prepared using a regular co-rotating two-screw extruder and then the samples were foamed using scCO2 as the physical blowing agent in a batch process. The results showed that the PTFE micropowder could be transformed into a fiber with a certain aspect ratio and entangled with each other to form a network structure after extrusion, which greatly increased the melt strength of PP/PTFE. Well-structured cell morphology of PP/PTFE foam was obtained. The cell size decreased from 87 μm to 31 μm as the loading of PTFE increasing and the cell density of PP/PTFE(10.0%) foam reached 7.4×108 cells/cm3, which was more than 10 times higher as compared to the neat PP foam. In addition, the PTFE particles, and the growth of nucleated small cells in the multiple-phase system, were responsible for the enhanced heterogeneous nucleation of PP foaming with good cellular structure during the foaming process. Compared to the neat PP foam, PP/PTFE foams showed significantly improved tensile strength and tensile strain. Due to the remarkable decrease in cell size and increase in cell density, which increased from 6 MPa to 11 MPa and from 107% to 230%, respectively.
Key words:  PP/PTFE blend    supercritical carbon dioxide foaming    microporous morphology    melt strength    tensile strength
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TQ328  
基金资助: 国防基础科研核科学挑战计划(TZ2018004);国家自然科学基金(11079048)
作者简介:  杨晨光,2014年6月毕业于郑州大学,获得工学学士学位。现为中科院上海应用物理研究所博士研究生,在吴国忠研究员的指导下进行研究。目前主要研究领域为聚丙烯材料改性及超临界二氧化碳发泡。以第一作者在知名期刊已发表学术论文10余篇。包括Industrial&Engineering Chemistry Research、 RSC Advances、Applied Surface Science和Journal of Applied polymer Science等。
    吴国忠,中科院上海应用物理研究所研究员、博士生导师。1992年6月于中国科学技术大学获学士学位,1998年于日本东京大学获得理学博士学位,1998年10月至2002年6月在东京大学附属原子能研究所从事超临界水的辐射效应研究。获得中国科学院“百人计划(2000)”荣誉称号及择优支持(2000)。2006年获国务院政府特殊津贴。主要从事辐射化学、高分子材料改性、加工及辐射降解研究。现任中科院上海应用物理研究所辐射化学总师,同时兼任上海科技大学特聘教授、浙江中科辐射高分子材料研发中心(与嘉善县人民政府共建)主任。近年来,在国际和国内学术期刊发表论文100余篇,论文他人引用超过2200次,h因子23,申请发明专利20余项,部分技术得到工业应用,出版了《辐射技术与先进材料(中英两版)》等学术专著。
引用本文:    
杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
YANG Chenguang, ZHAO Quan, ZHANG Maojiang, XING Zhe, WU Guozhong. Improving Cellular Structure and Property of Supercritical CO2 Foamed ofPolypropylene via the Addition of PTFE Micropowder. Materials Reports, 2019, 33(21): 3547-3551.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050235  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3547
1 Suh K W, Park C P, Maurer M, et al.Advanced Materials,2000,12(23),1779.
2 Xu Z M, Jiang X L, Liu T, et al.The Journal of Supercritical Fluids,2007, 41(2),299.
3 Yang C G, Wang M H, Zhang M X, et al.Molecules,2016, 21(12),1660.
4 Yang C G, Zhe X, Zhang M X,et al. Radiation Physics and Chemistry,2017, 131,35.
5 Yang C G, Xing Z, Zhao Q, et al.Journal of Applied Polymer Science,2018,135(6),45809.
6 Chen X H, Huang H X. Acta Polymerica Sinica, 2017(8),1331 (in Chinese).
陈祥辉, 黄汉雄.高分子学报,2017(8),1331.
7 Wang M, Li X.Materials Review B:Research Papers, 2018(4),1236 (in Chinese).
王明, 李星.材料导报:研究篇,2018(4),1236.
8 Yang C G, Zhao Q, Xing Z, et al. Journal of Radiation Research and Radiation Process,2018, 36(1),10301 (in Chinese).
杨晨光,赵全,王谋华,等. 辐射研究与辐射工艺学报,2018, 36(1),10301.
9 Zhai W T, Kuboki T, Wang L, et al.Industrial & Engineering Chemistry Research,2010,49(20),9834.
10 Huang H X, Wang J K, Sun X H. Journal of Functional Polymers, 2008, 21(1),1.
黄汉雄, 王建康, 孙晓辉. 功能高分子学报 ,2008,21(1),1.
11 Zhao J, Zhao Q, Wang C, et al.Materials & Design,2017, 131,1.
12 Zirkel L, Jakob M, Munstedt H.Journal of Supercritical Fluids,2009, 49(1),103.
13 Yang C, Xing Z, Wang M, et al. Industrial & Engineering Chemistry Research,2018, 57(5),1498.
14 Ali M, Okamoto K, Yamaguchi M, et al.Journal of Polymer Science Part B-Polymer Physics,2009, 47(20),2008.
15 Zhai W, Ko Y, Zhu W, et al. International Journal of Molecular Sciences,2009, 10(12),5381.
16 Wong A, Chu R K M, Leung S N, et al.Chemical Engineering Science,2011, 66(1),55.
17 Ji G, Zhai W, Lin D,et al.Industrial & Engineering Chemistry Research,2013, 52(19),6390.
18 Wang M, Xie L, Qian B, et al. Journal of Applied Polymer Science,2016, 133(41),44094.
19 Wang L, Ishihara S, Hikima Y, et al.ACS Applied Materials & Interfaces,2017, 9(11),9250.
20 Liu T C, Zheng Y S, Li L X, et al. China Plastics, 2006, 20(9),49 (in Chinese).
刘太闯, 郑云生, 李令尧,等. 中国塑料,2006, 20(9),49.
21 Bao J B, Junior A N, Weng G S, et al.The Journal of Supercritical Fluids,2016, 111,63.
22 Yang C G, Xing Z, Zhao Q, et al.Radiation Physics and Chemistry,2017, 141,276.
[1] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[2] 蒋丹枫, 王国辉, 李婷婷, 何帆, 戴耀东. NBR/PVC橡塑合金辐射防护材料的制备及性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 56-60.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed