Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2854-2861    https://doi.org/10.11896/cldb.18070061
  无机非金属及其复合材料 |
高性能磷酸锰锂正极材料的研究进展
李俊豪1,冯斯桐1,张圣洁1,郑育英1,徐建波2,党岱1,刘全兵1
1 广东工业大学轻工化工学院,广州 510006
2 香港科技大学机械及航空航天工程学系,中国香港
Research Progress in High Performance Lithium Manganese Phosphate Cathode Materials
LI Junhao1, FENG Sitong1, ZHANG Shengjie1, ZHENG Yuying1, XU Jianbo2, DANG Dai1, LIU Quanbing1
1 School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
2 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
下载:  全 文 ( PDF ) ( 16154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池具有高能量密度、长循环寿命、无记忆效应等优点,被广泛应用于电子产品、电动交通、储能等多个领域,很大程度上改善了现代人类生活。磷酸铁锂(LiFePO4)作为锂离子电池正极材料具有安全性高、循环性能好、热稳定性好等优点,被广泛应用于锂离子动力电池,但它的低能量密度偏低,制约着其进一步发展和应用。磷酸锰锂(LiMnPO4)具有与LiFePO4相似的高安全性和稳定性,其理论能量密度相比于后者要高出21%,被认为是最有潜力的下一代锂离子动力电池正极材料。
   然而,橄榄石结构的LiMnPO4仍存在一些固有缺陷制约着其发展和应用。表现在以下几个方面:(1)材料的离子电导率和电子电导率都非常低,导致材料的容量难以发挥;(2)LiMnPO4与电解质会发生副反应,生成产物Li4P2O7等,随着材料充放电次数的增加,LiMnPO4会逐渐失去活性;(3)脱锂后形成的磷酸锰(MnPO4)会受到Jahn-Teller效应影响,晶体结构从八面体变成立方相,压缩锂脱嵌通道,造成结构上的不可逆变化;(4)部分锰离子发生歧化反应溶解在电解液中,导致材料循环性能变差。
   针对材料存在的问题,为提高其电化学性能,研究者们在材料的制备和改性方面不断进行尝试,并取得了丰硕成果,体现在以下四个方面:(1)纳米化,缩短锂离子的固态扩散路径,增大电极反应面积,从而提高材料的宏观锂离子电导率;(2)晶面选控,增大锂离子快速迁移的晶面面积,从而提高材料的微观锂离子电导率;(3)体相掺杂,通过掺杂原子的原位取代或形成固溶体来稳定晶体结构,提高离子/电子电导率,从而提高材料的循环和倍率性能;(4)表面包覆,通过在材料表面复合导电碳、金属氧化物层等,提高材料的离子/电子电导率,阻止LiMnPO4与电解液直接接触。目前,LiMnPO4已经由起初的几乎发挥不出来克容量,发展成在低倍率下克容量可接近理论值。
   本文归纳了高性能LiMnPO4制备与改性的研究进展,分别从材料的结构、表界面性质、电极反应动力学方面分析了提高材料性能的途径。最后,笔者认为在材料进行元素掺杂和纳米化的基础上进行晶面选控和表面包覆改性是最大限度发挥材料性能的有效途径,从而推动其商业化进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李俊豪
冯斯桐
张圣洁
郑育英
徐建波
党岱
刘全兵
关键词:  锂离子电池  磷酸锰锂  纳米化  晶面选控  体相掺杂  表面包覆    
Abstract: Lithium-ion batteries have many advantages such as high energy density, good cycle performance, no memory effectand so on. They are widely used in many fields such as electronic products, electric traffic, and energy storage system, which have greatly improved the modern human's life. Lithium iron phosphate (LiFePO4), as a cathode electrode material, possesses high safety, excellent cycle performance and thermal stability, and it is widely used in lithium-ion power battery. However, its energy density is low, which restricts its further development and application. Lithium manganese phosphate (LiMnPO4) has high safety and stability similar to LiFePO4, and its theoretical energy density is 21% higher than that of the latter, so it is considered to be the most promising cathode material for next-generation power lithium-ion power battery.
However, the olivine-structured LiMnPO4 still has some inherent defects that restrict its development and application: (1) the ionic conductivity and electronic conductivity of the material are very low, which make it's difficult to make full use of the material capacity; (2) LiMnPO4 reacts with the electrolyte to produce the product Li4P2O7, etc. which will result in the activity will gradually lose as charge and discharge process;(3) the manganese phosphate (MnPO4) formed after delithiation will be affected by the Jahn-Teller effect, the crystal structure will change from octahedron to cubic phase, and the channel of lithium-ion decompression is compressed, causing structural irreversible changes; (4) part of manganese ions are dissolved in the disproportionation reaction that occurs in the electrolyte causes the material to cycle poorly. A lot of work has been done to overcome these problems.
In order to improve the electrochemical performance of LiMnPO4, the researchers have made continuous attempts in the preparation and modification of materials:(1) nanocrystallization, shortening the solid-state diffusion path of lithium-ion, and increasing the reaction area of the electrode, thereby increasing the ionic conductivity of the material in macro; (2) selection control of planes, increasing the area of the crystal plane for rapid migration of lithium ions, thereby increasing the ionic conductivity of the material in micro; (3) body doping, in-situ substitution of heteroatoms or formation of solid solution to stabilize the crystal structure and improve ionic/electronic conductivity, thereby improving the cyclic and rate performance of the material;(4) surface coating, by coating conductive carbon, metal oxide layer, etc. on the surface of the material to improve the ionic/electronic conductivity of the material and prevent LiMnPO4 from directly contacting the electrolyte. Since now, LiMnPO4 has been developed from the original almost playno specific capacity, and developed to a theoretical value at a low rate.
In this paper, the research progress on the preparation and modification of high performance LiMnPO4 is summarized. The approaches to improve the material properties are analyzed from the aspects of material structure, surface interface properties and electrode reaction kinetics. Finally, we believe that the crystal surface control and surface coating modification on the basis of element doping and nanocrystallization is the most effective way to maximize the material properties, thus promoting its commercialization process.
Key words:  lithium-ion battery    lithium manganese phosphate    nanocrystallization    crystal surface control    body-doping    surface coating
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  O646  
基金资助: 国家自然科学基金青年项目(21606050);珠江科技新星项目(201806010039);广东省普通高校特色创新项目(2017KTSCX055)
作者简介:  李俊豪,2017年6月毕业于广州大学,获得学士学位。现为广东工业大学硕士研究生,在刘全兵副教授的指导下进行研究。目前主要研究方向为锂离子电池磷酸锰锂正极材料和过渡金属氧化物负极材料。
刘全兵,副教授、硕士研究生导师。2007年7月本科毕业于武汉工程大学,2012年7月在华南理工大学应用化学专业取得博士学位,2012/7—2016/10年分别在中国电子科技集团公司第十八研究所和珠海光宇电池有限公司从事锂离子电池研发工作。2016年11月以“青年百人”人才引进加入广东工业大学,先后入选第五批珠海市“优秀青年人才”和第八批广州市“珠江科技新星”。目前主要从事新能源材料与器件方面的研究,包括锂离子电池、锂硫电池、超级电容器、燃料电池等。近年来,在该领域发表SCI论文20余篇,包括Advanced Energy Materials、Small、Journal of Materials Chemistry A和Journal of Power Source等。
引用本文:    
李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
LI Junhao, FENG Sitong, ZHANG Shengjie, ZHENG Yuying, XU Jianbo, DANG Dai, LIU Quanbing. Research Progress in High Performance Lithium Manganese Phosphate Cathode Materials. Materials Reports, 2019, 33(17): 2854-2861.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070061  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2854
1 Zhang F, Qi L M. <i>Advanced Science (Weinh)</i>,2016, 3, 1600049.<br />
2 Deng Y F, Yang C X, Zou K X, et al. <i>Advanced Energy Materials</i>,2017, 7, 1601958.<br />
3 Padhi A K, Nanjundaswamy K S, Goodenough J B.<i>Journal of the Electrochemical Society</i>,1997, 144, 1188.<br />
4 Ong S P, Jain A, Hautier G, et al.<i>Electrochemistry Communications</i>,2010, 12, 427.<br />
5 Yamada A, Hosoya M, Chung S C, et al. <i>Journal of Power Sources</i>,2003, 119-121, 232.<br />
6 Seo I, Senthilkumar B, Kim K H, et al.<i>Journal of Power Sources</i>,2016, 320, 59.<br />
7 Hong Y, Tang Z, Hong Z, et al.<i>Journal of Power Sources</i>,2014, 248, 655.<br />
8 Damen L, De Giorgio F, Monaco S, et al.<i>Journal of Power Sources</i>,2012, 218, 250.<br />
9 Oh S M, Oh S W, Yoon C S, et al.<i>Advanced Functional Materials</i>,2010, 20, 3260.<br />
10 Kwon N H, Fromm K M.<i>Electrochimica Acta</i>,2012, 69, 38.<br />
11 Norberg N S, Kostecki R.<i>Journal of the Electrochemical Society</i>,2012, 159, A1431.<br />
12 Moskon J, Pivko M, Jerman I, et al.<i>Journal of Power Sources</i>,2016, 303, 997.<br />
13 Shin H, Park J, Sastry A M, et al.<i>Journal of Power Sources</i>,2015, 284, 416.<br />
14 Yi T F, Fang Z K, Xie Y, et al.<i>Journal of Alloys and Compounds</i>,2014, 617, 716.<br />
15 Tarascon J M, Recham N, Armand M, et al.<i>Chemistry of Materials</i>,2010, 22, 724.<br />
16 Zhang W X, Shan Z Q, Zhu K L, et al.<i>Electrochimica Acta</i>,2015, 153, 385.<br />
17 Dinh H C, Mho S I, Kang Y K, et al.<i>Journal of Power Sources</i>,2013, 244, 189.<br />
18 Yang W C, Bi Y J, Qin Y P, et al.<i>Journal of Power Sources</i>,2015, 275, 785.<br />
19 Wi S, Kim J, Lee S, et al.<i>Electrochimica Acta</i>,2016, 216, 203.<br />
20 Wi S, Park J, Lee S, et al.<i>Nano Energy</i>,2017, 31, 495.<br />
21 Zhou X, Xie Y, Deng Y F, et al. <i>Journal of Materials Chemistry A</i>,2015, 3, 996.<br />
22 Wu Z, Long Y F, Lv X, et al.<i>Ceramics International</i>,2017, 43, 6089.<br />
23 Fu X N, Chang Z R, Chang K, et al.<i>Electrochimica Acta</i>,2015, 178, 420.<br />
24 Xie Z Z, Chang K, Li B, et al.<i>Electrochimica Acta</i>,2016, 189, 205.<br />
25 Gu Y X, Wang H L, Zhu Y J, et al.<i>Solid State Ionics</i>,2015, 274, 106.<br />
26 Chen D, Wei W, Wang R, et al.<i>Dalton Transactions,</i>2012, 41, 8822.<br />
27 Hong Y, Tang Z L, Quan W, et al.<i>Ceramics International</i>,2016, 42, 8769.<br />
28 Bao L, Xu G, Wang J W, et al. <i>CrystEngComm</i>,2015, 17, 6399.<br />
29 Bao L, Chen Y F, Xu G, et al.<i>European Journal of Inorganic Chemistry</i>,2018, 2018, 1533.<br />
30 Kim T H, Park H S, Lee M H, et al.<i>Journal of Power Sources</i>,2012, 210, 1.<br />
31 Liao L H, Wang H T, Guo H, et al. <i>Journal of Materials Chemistry A</i>,2015, 3, 19368.<br />
32 Nava-Avendao J, Palacín M R, Oró-Solé J, et al.<i>Solid State Ionics</i>,2014, 263, 157.<br />
33 Chen G, Shukla A K, Song X, et al.<i>Journal of Materials Chemistry</i>,2011, 21, 10126.<br />
34 Fang H, Yi H, Hu C, et al. <i>Electrochimica Acta</i>,2012, 71, 266.<br />
35 Yang G, Ni H, Liu H D, et al.<i>Journal of Power Sources</i>,2011, 196, 4747.<br />
36 Ni J F, Gao L J.<i>Journal of Power Sources</i>,2011, 196, 6498.<br />
37 Gan Y, Chen C, Liu J, et al.<i>Journal of Alloys and Compounds</i>,2015, 620, 350.<br />
38 Qin L F, Xia Y G, Cao H L, et al.<i>Electrochimica Acta</i>,2016, 222, 1660.<br />
39 Tomoyuki S, Shigeto O, Takayuki D, et al.<i>Electrochimica Acta</i>,2009, 54, 3145.<br />
40 Huang Q Y, Wu Z, Su J, et al.<i>Ceramics International</i>,2016, 42, 11348.<br />
41 Chen J, Zhang D Y, Qiao J, et al. <i>Ionics</i>,2018, 24, 689.<br />
42 Zhang J, Luo S H, Chang L J, et al.<i>Applied Surface Science</i>,2017, 394, 190.<br />
43 Kou L Q, Chen F J, Tao F, et al.<i>Electrochimica Acta</i>,2015, 173, 721.<br />
44 Wang Y, Yang H, Wu C Y, et al.<i>Journal of Materials Chemistry A</i>,2017, 5, 18674.<br />
45 Ramar V, Balaya P.<i>Physical Chemistry Chemical Physics</i>, 2013, 15, 17240.<br />
46 Xu X Y, Wang T, Bi Y J, et al.<i>Journal of Power Sources</i>,2017, 341, 175.<br />
47 Zhang Z J, Hu G R, Cao Y B, et al.<i>Journal of Power Sources</i>,2016, 303, 29.<br />
48 Yang C C, Hung Y W, Lue S J.<i>Journal of Power Sources</i>,2016, 325, 565.<br />
49 Li J Z, Luo S H, Ding X Y, et al. <i>ACS Applied Materials & Interfaces</i>, 2018, 10, 10786.<br />
50 Cao X X, Pan A Q, Zhang Y F, et al. <i>ACS Applied Materials & Interfaces</i>, 2016, 8, 27632.<br />
51 Liu Q B, Luo C X, Song H Y, et al. <i>Chinese Journal of Power Sources</i>, 2011(35), 325(in Chinese).<br />
刘全兵, 罗传喜, 宋慧宇, 等. 电源技术,2011(35), 325.<br />
52 Su L W, Sha Y L, Jiang J K, et al.<i>Journal of Nanomaterials</i>,2015, 16, 212.<br />
53 Wang L G, Zuo P J, Yin G P, et al. <i>Journal of Materials Chemistry A</i>,2015, 3, 1569.<br />
54 Yang L T, Xia Y G, Fan X, et al.<i>Electrochimica Acta</i>,2016, 191, 200.<br />
55 Fu X N, Chang K, Li B, et al.<i>Electrochimica Acta</i>,2017, 225, 272.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[4] 王春明, 杨牧南, 黄建辉, 刘位江, 梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[5] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[6] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[13] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[14] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[15] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed