Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1791-1794    https://doi.org/10.11896/j.issn.1005-023X.2018.11.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
中空硅纳米球锂离子电池负极材料的制备及电化学性能
丁昂1,2,张钟元1,程厅1,董星龙1
1 大连理工大学材料科学与工程学院,大连 116024;
2 中国兵器科学研究院宁波分院,宁波 315104
Synthesis of Hollow Si Nanospheres and Its Electrochemical Performances as Anode Material for Lithium-ion Batteries
DING Ang1, 2, ZHANG Zhongyuan1, CHENG Ting1, DONG Xinglong1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalin 116024;
2 Ningbo Branch of China Academy of Ordnance Science, Ningbo 315103
下载:  全 文 ( PDF ) ( 1710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直流电弧等离子体蒸发法原位合成了Si-Al纳米颗粒(Si-Al NPs),获得了由晶体Si包覆单晶金属Al核的纳米胶囊结构。通过化学酸洗处理去除Al核制备出中空结构的Si纳米球(Si HNSs),并将其作为锂离子电池的负极材料,研究了电极的循环和倍率电化学性能。与Si-Al NPs电极相比,Si HNSs电极的循环稳定性及倍率性能都显著提高,这源于中空结构的Si纳米球为嵌/脱锂过程中的体积变化提供了有效缓冲空间,同时也为锂离子迁移提供了更多通道。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁昂
张钟元
程厅
董星龙
关键词:  中空结构  Si-Al纳米粒子  锂离子电池  Si负极  直流电弧等离子体    
Abstract: Si-Al nanoparticles (Si-Al NPs) possessed the nanocapsule structure with crystal Si shell and monocrystal Al core were prepared by DC arc-discharge plasma method. The hollow Si nanospheres (Si HNSs) were successfully obtained by subsequently removing the Al component from Si-Al NPs through acid pickling process. Both of Si-Al NPs and Si HNSs were investigated as the anode materials for lithium ion battery. The results indicated that electrochemical performances of Si HNSs electrode had been greatly improved compared with Si-Al NPs electrode, because the hollow space in Si nanosphere could provide an effective buffer space for volume change during the intercalation/deintercalation of lithium ions and supplies more migration channels for lithium ions.
Key words:  hollow structure    Si-Al nanoparticle    lithium-ion battery    Si anode    DC arc-discharge plasma
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(51331006;51271044)
作者简介:  丁昂:男,1978年生,博士研究生,研究方向为能源材料 E-mail:82028281@qq.com 董星龙:男,1965年生,博士,教授,博士研究生导师,主要从事吸波纳米材料、新能源纳米材料等研究 E-mail:dongxl@dlut.edu.cn
引用本文:    
丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
DING Ang, ZHANG Zhongyuan, CHENG Ting, DONG Xinglong. Synthesis of Hollow Si Nanospheres and Its Electrochemical Performances as Anode Material for Lithium-ion Batteries. Materials Reports, 2018, 32(11): 1791-1794.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.004  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1791
1 Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J].Energy & Environmental Science,2011,4(9):3287.
2 Etacheri V, Marom R, Ran E, et al. Challenges in the development of advanced Li-ion batteries: A review[J].Energy & Environmental Science,2011,4(9):3243.
3 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359.
4 Jia H, Gao P, Yang J, et al. Novel three-dimensionalmesoporous silicon for high power lithium-ion batteryanode material[J].Advanced Energy Materials,2011,1(6):1036.
5 Yu Y, Gu L, Zhu C, et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon[J].Advanced Mate-rials,2010,22(20):2247.
6 Jiang Z, Li C, Hao S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J].Electrochimica Acta,2014,115(3):393.
7 Hwang G, Park H, Bok T, et al. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequentthermal oxidation[J].Chemical Communications,2015,51(21):4429.
8 Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J].Nature Nanotechnology,2008,3(1):31.
9 Teki R, Koratkar N, Karabacak T, et al. Enhanced photoemission from nanostructured surface topologies[J].Applied Physics Letters,2006,89(19):193116.
10 Xie J, Yang X, Zhou S, et al. Comparing one and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials[J].ACS Nano,2011,5(11):9225.
11 Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J].Nano Letters,2012,12(5):2318.
12 Gowda S R, Pushparaj V, Herle S, et al. Three-dimensionally engineered porous silicon electrodes for Li ion batteries[J].Nano Letters,2012,12(12):6060.
13 Kim H, Han B, Prof J C, et al. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angewandte Chemie International Edition,2008,47(52):10151.
14 Yu Jieyi, Gao Song, Dong Xinglong. Electrochemical performance of Si nanoribbons as anode materials for Li-ion battery synthesized by arc-discharge plasma[J].Chinese Journal of Materials Research,2017,31(3):161(in Chinese).
余洁意,高嵩,董星龙.硅纳米带电弧等离子体的合成及其储锂电化学特性[J].材料研究学报,2017,31(3):161.
15 Berla L A, Lee S W, Cui Y, et al. Mechanical behavior of electrochemically lithiated silicon[J].Journal of Power Sources,2015,273:41.
16 Wang M S, Song W L, Fan L Z. Back cover: Three-dimensional interconnected network of graphene-wrapped silicon/carbon nanofiber hybrids for binder-free anodes in lithium-ion batteries[J].Chemelectrochem,2015,2(11):1699.
17 Xia T, Zhang W, Murowchick J, et al. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery[J].Nano Letters,2013,13(11):5289.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[5] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[6] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[7] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[8] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[9] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[10] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[11] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[12] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[13] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[14] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[15] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed