Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 36-44    https://doi.org/10.11896/j.issn.1005-023X.2017.09.004
  专题栏目:二维材料 |
石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*
陈坚, 徐晖
东南大学材料科学与工程学院,江苏省先进金属材料高技术研究重点实验室,南京 211189
Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries
CHEN Jian, XU Hui
Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自2004年被发现以来,石墨烯及其纳米复合材料因其特殊的结构和优异的性能而受到广泛关注,并在锂离子电池负极方面展现出巨大的应用价值。首先简单介绍了石墨烯及其常用制备方法,然后详细介绍了石墨烯及其纳米复合材料作为锂离子电池负极材料的研究现状,并阐述了各自的优势与不足,提出了一些改进方案,最后展望了其在锂电负极的应用前景和未来面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈坚
徐晖
关键词:  石墨烯  石墨烯基纳米复合材料  负极  锂离子电池    
Abstract: Since the discovery of graphene in 2004, graphene and graphene-based nanocomposites have attracted wide attention and investigation due to their unique structure and excellent properties, especially as anode materials for lithium-ion batteries. In this paper, recent progress reported on the synthesis and fabrication of graphene and graphene-based nanocomposites for applications as anode materials of lithium-ion batteries is reviewed. Importantly, the prospects and future challenges of graphene-based electrodes are discussed.
Key words:  graphene    graphene-based nanocomposite    anode    lithium-ion battery
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB34  
  O469  
基金资助: *国家自然科学基金面上项目(11472080); 江苏省科技基础研究计划(BK20141336); 江苏省先进金属材料高技术研究重点实验室(BM2007204)
作者简介:  陈坚:男,1978年生,博士,教授,博士研究生导师,研究方向为石墨烯材料的制备与应用,微纳米力学等 E-mail:j.chen@seu.edu.cn 徐晖:男,1986年生,博士研究生,研究方向为石墨烯基锂离子电池负极材料
引用本文:    
陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries. Materials Reports, 2017, 31(9): 36-44.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.004  或          http://www.mater-rep.com/CN/Y2017/V31/I9/36
[1] van Noorden R. A better battery[J]. Nature,2014,507(7490):26.
[2] Armand M, Tarascon J M.Building better batteries[J]. Nature,2008,451(7179):652.
[3] Wu Chao, Cui Yongli, Zhuang Quanchao, et al.Progress of electrode materials entailing conversion reaction for Li-ion batteries[J]. Chem Bull,2011,74(11):1014(in Chinese).吴超,崔永丽,庄全超,等. 基于转化反应机制的锂离子电池电极材料研究进展[J]. 化学通报,2011,74(11):1014.
[4] Geim A K, Novoselov K S.The rise of graphene[J]. Nat Mater,2007,6(3):183.
[5] Wu Z, Zhou G, Yin L, et al.Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1(1):107.
[6] Zhao Yang, Huang Ying, Wang Qiufen, et al.Research progress of graphene and its composites as anode materials for lithium ion batte-ries[J]. Dev Appl Mater,2012,27(6):96(in Chinese).赵阳,黄英,王秋芬,等. 石墨烯及其复合材料作为锂离子电池负极材料的研究进展[J]. 材料开发与应用,2012,27(6):96.
[7] Huang X, Zeng Z, Fan Z, et al.Graphene-based electrodes[J]. Adv Mater,2012,24(45):5979.
[8] Huang X, Yin Z, Wu S, et al.Graphene-based materials: Synthesis, characterization, properties, and applications[J]. Small,2011,7:1876.
[9] Ji L, Meduri P, Agubra V, et al.Graphene-based nanocomposites for energy storage[J]. Adv Energy Mater,2016,6:1502159.
[10] Pumera M.Graphene-based nanomaterials for energy storage[J]. Energy Environ Sci,2011,4(3):668.
[11] Xu M, Liang T, Shi M, et al.Graphene-like two-dimensional materials[J]. Chem Rev,2013, 113(5):3766.
[12] Sun Y, Wu Q, Shi G.Graphene based new energy materials[J]. Energy Environ Sci,2011, 4(4):1113.
[13] Novoselov K S, Jiang D, Schedin F, et al.Two-dimensional atomic crystals[J]. PNAS,2005,102(30):10451.
[14] Whitener K E Jr, Sheehan P E. Graphene synthesis[J]. Diamond Relat Mater,2014,46:25.
[15] Osaklung J, Euaruksakul C, Meevasana W, et al.Spatial variation of the number of graphene layers formed on the scratched 6H-SiC(0001) surface[J]. Appl Surf Sci,2012,258(10):4672.
[16] Mishra N, Boeckl J, Motta N, et al.Graphene growth on silicon carbide: A review[J]. Phys Status Solidi A,2016,213(9):2277.
[17] Wang Lin, Tian Linhai, Wei Guodong, et al.Epitaxial growth of graphene and their applications in devices[J]. J Inorg Mater,2011,26(10):1009(in Chinese).王霖,田林海,尉国栋,等. 石墨烯外延生长及其器件应用研究进展[J]. 无机材料学报, 2011,26(10):1009.
[18] Yazdi G R, Iakimov T, Yakimova R.Epitaxial graphene on SiC: A review of growth and characterization[J]. Crystals,2016,6(5):53.
[19] Chen J, Guo X, Tang Q, et al.Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate[J]. Carbon,2013,55:144.
[20] Ambrosi A, Chua C K, Latiff N M, et al.Graphene and its electrochemistry:An update[J]. Chem Soc Rev,2016,45(9):2458.
[21] Chen X, Zhang L, Chen S.Large area CVD growth of graphene[J]. Synth Met,2015,210:95.
[22] Li D, Muller M B, Gilje S, et al.Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
[23] Kim I T, Magasinski A, Jacob K, et al.Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries[J]. Carbon, 2013,52:56.
[24] Zhang C, Lv W, Xie X, et al.Towards low temperature thermal exfoliation of graphite oxide for graphene production[J]. Carbon,2013,62:11.
[25] Reina A, Jia X, Ho J, et al.Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
[26] Li X, Cai W, An J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312.
[27] Kwak J, Chu J H, Choi J, et al.Near room-temperature synthesis of transfer-free graphene films[J]. Nat Commun,2012,3:645.
[28] Gao L, Ren W, Xu H, et al.Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nat Commun,2012,3:699.
[29] Dai B, Fu L, Zou Z, et al.Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene[J]. Nat Commun,2011,2:522.
[30] Marcano D C, Kosynkin D V, Berlin J M, et al.Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806.
[31] Xu H, Zeng M, Li J.Graphene-wrapped Cr2O3 hollow nanospheres with enhanced electrochemical performances for lithium-ion batteries[J]. Int J Electrochem Sci,2015, 10(9):7361.
[32] Tong X, Zeng M, Xu H, et al.Synthesis and lithium storage performance of graphene/Co3O4 microrods hybrids[J]. J Mater Sci-Mater Electron,2016,27(7):7657.
[33] Chen W, Yan L, Bangal P R.Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon,2010,48(4):1146.
[34] Wu Z, Ren W, Gao L, et al.Synthesis of high-quality graphene with a pre-determined number of layers[J]. Carbon,2009,47(2):493.
[35] Tong X, Zeng M, Li J, et al.UV-assisted synthesis of surface modified mesoporous TiO2/G microspheres and its electrochemical performances in lithium ion batteries[J]. Appl Surf Sci, 2017,392:897.
[36] Huang H, Lei C, Luo G, et al.UV-assisted reduction of graphene oxide on Ni foam as high performance electrode for supercapacitors[J]. Carbon,2016,107:917.
[37] Williams G, Seger B, Kamat P V.TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. Acs Nano,2008,2(7):1487.
[38] Han S, Kim Y, Pyo M.Reduced graphene oxide/disodium terephthalate composites via ultrasonic-assisted co-precipitation for sodium ion battery anodes[J]. Bull Korean Chem Soc, 2016,37(11):1838.
[39] Lu L, Zhu Y, Shi C, et al.Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon,2016,109:373.
[40] Huang Z, Zhang H, Chen Y, et al.Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application[J]. Electrochim Acta,2013,108:421.
[41] Sari F N I, Ting J. One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor[J]. Appl Surf Sci,2015,355:419.
[42] Toh S Y, Loh K S, Kamarudin S K, et al.Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation[J]. Chem Eng J,2014,251:422.
[43] Wang S, Li H, Li S, et al.Electrochemical-reduction-assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium-storage performance[J]. Chem Eur J,2013,19(33):10895.
[44] Qiu H, Guan Y, Luo P, et al.Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells[J]. Bios Bioelectron,2017,89: 85.
[45] Xu P, Yang J, Wang K, et al.Porous graphene: Properties, preparation, and potential applications[J]. Chin Sci Bull,2012,57(23):2948.
[46] Han S, Wu D, Li S, et al.Porous graphene materials for advanced electrochemical energy storage and conversion devices[J]. Adv Mater,2014,26(6):849.
[47] Yoon H W, Cho Y H, Park H B.Graphene-based membranes: Status and prospects[J]. Philos Trans A Math Phys Eng Sci,2016,374:2060.
[48] Fang Y, Lv Y, Che R, et al.Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage[J]. J Am Chem Soc, 2013,135(4):1524.
[49] Ren L, Hui K N, Hui K S, et al.3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage[J]. Sci Rep,2015,5:14229.
[50] Wu Z, Ren W, Xu L, et al.Doped graphene sheets as anode mate-rials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano,2011,5(7):5463.
[51] Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS Nano,2010,4(11):6337.
[52] Zhou L, Hou Z F, Gao B, et al.Doped graphenes as anodes with large capacity for lithium-ion batteries[J]. J Mater Chem A,2016,4(35):13407.
[53] Huang S, Zhang L, Zhu J, et al.Crumpled nitrogen- and boron-dualself-doped graphene sheets as an extraordinary active anode material for lithium ion batteries[J]. J Mater Chem A, 2016,4(37):14155.
[54] Zhang C, Mahmood N, Yin H, et al.Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction rea-ction and lithium ion batteries[J]. Adv Mater,2013,25(35):4932.
[55] Yun Y S, Le V, Kim H, et al.Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries[J]. J Power Sources,2014,262:79.
[56] Ma X, Ning G, Qi C, et al.Phosphorus and nitrogen dual-doped few-layered porous graphene:A high-performance anode material for lithium-ion batteries[J]. ACS Appl Mater Interfaces,2014,6(16):14415.
[57] Wang Z, Xu D, Wang H, et al.In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano,2013,7(3):2422.
[58] Mcdowell M T, Lee S W, Nix W D, et al.25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Adv Mater,2013, 25(36):4966.
[59] Rahman M A, Song G, Bhatt A I, et al.Nanostructured silicon anodes for high-performance lithium-ion batteries[J]. Adv Funct Mater,2016,26(5):647.
[60] Ma Y, Younesi R, Pan R, et al.Constraining Si particles within graphene foam monolith: Interfacial modification for high-perfor-mance Li+ storage and flexible integrated configuration[J]. Adv Funct Mater,2016,26(37):6797.
[61] Yi R, Zai J, Dai F, et al.Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy,2014,6:211.
[62] Hassan F M, Batmaz R, Li J, et al.Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries[J]. Nat Commun,2015,6:8597.
[63] Zhou X, Yin Y, Wan L, et al.Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J]. Chem Commun,2012, 48(16):2198.
[64] Xia F, Kwon S, Lee W W, et al.Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batte-ries[J]. Nano Lett,2015,15(10):6658.
[65] Niu Jin, Zhang Su, Niu Yue, et al.Silicon-based anode materials for lithium-ion batteries[J]. Prog Chem,2015,27(9):1275(in Chinese).牛津,张苏,牛越,等. 硅基锂离子电池负极材料[J]. 化学进展,2015,27(9):1275.
[66] Liu H, Shen Z, Liang S, et al.One-step in situ preparation of liquid-exfoliated pristine graphene/Si composites: Towards practical anodes for commercial lithium-ion batteries[J]. New J Chem,2016,40(8):7053.
[67] Liu X, Zhang J, Si W, et al.Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life[J]. ACS Nano,2015,9(2):1198.
[68] Chang J, Huang X, Zhou G, et al.Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode[J]. Adv Mater,2014,26(5):758.
[69] Ko M, Chae S, Jeong S, et al.Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano,2014,8(8):8591.
[70] Hong Y J, Kang Y C.General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability[J]. Small,2015,11(18):2157.
[71] Cho J S, Kang Y C.Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kir-kendall diffusion effect and their electrochemical properties[J]. Small,2015,11(36):4673.
[72] Liu L, Xie F, Lyu J, et al.Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries[J]. J Power Sources,2016,321:11.
[73] Huang B, Li X, Pei Y, et al.Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability[J]. Small,2016,12(14):1945.
[74] Li J, Wu P, Ye Y, et al.Designed synthesis of SnO2@C yolk-shell spheres for high-performance lithium storage[J]. CrystEngComm,2014,16(4):517.
[75] Ma D, Dou P, Yu X, et al.Novel hollow SnO2 nanosphere@TiO2 yolk-shell hierarchical nanospheres as anode material for high-performance lithium-ion batteries[J]. Mater Lett, 2015,157:228.
[76] Li X, Zhang X, Wang R, et al.Graphene nanoribbons wrapping double nanoshells of SnO2@TiO2 for high lithium storage[J]. J Power Sources,2016,336:298.
[77] Zhou D, Song W, Li X, et al.Hierarchical porous reduced graphene oxide/SnO2 networks as highly stable anodes for lithium-ion batte-ries[J]. Electrochim Acta,2016,207:9.
[78] Botas C, Carriazo D, Singh G, et al.Sn- and SnO2-graphene flexible foams suitable as binder-free anodes for lithium ion batteries[J]. J Mater Chem A,2015,3(25):13402.
[79] Qin J, He C, Zhao N, et al.Graphene networks anchored with Sn@graphene as lithium ion battery anode[J]. ACS Nano,2014,8(2):1728.
[80] Luo B, Qiu T, Hao L, et al.Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan[J]. J Mater Chem A,2016,4(2):362.
[81] Wu S, Han C, Iocozzia J, et al.Germanium-based nanomaterials for rechargeable batteries[J]. Angew Chem Int Ed,2016,55(28):7898.
[82] Bryngelsson H, Eskhult J, Nyholm L, et al.Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries[J]. Chem Mater,2007,19(5):1170.
[83] Chen S, Chen P, Wu M, et al.Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries[J]. Electrochem Commun,2010,12(10):1302.
[84] Poizot P, Laruelle S, Grugeon S, et al.Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496.
[85] Chen Xin, Zhang Naiqing, Sun Kening.3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries[J].Prog Chem,2011,23(10):2045(in Chinese).陈欣,张乃庆,孙克宁. 锂离子电池3d过渡金属氧化物负极微/纳米材料[J]. 化学进展, 2011,23(10):2045.
[86] Chen Ruwen, Tu Xinman, Chen Dezhi.Transition metal nitrides for lithium-ion batteries[J]. Prog Chem,2015,27(4):416(in Chinese).陈汝文,涂新满,陈德志. 过渡金属氮化物在锂离子电池中的应用[J]. 化学进展,2015, 27(4):416.
[87] Wu Z, Ren W, Wen L, et al.Graphene anchored with Co3O4 nano-particles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010,4(6):3187.
[88] Huang X H, Zhang P, Wu J B, et al.Porous NiO/graphene hybrid film as anode for lithium ion batteries[J]. Mater Lett,2015,153:102.
[89] Zhu X, Zhu Y, Murali S, et al.Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for li-thium ion batteries[J]. ACS Nano,2011,5(4):3333.
[90] Rai A K, Anh L T, Gim J, et al.Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery[J]. J Power Sources,2013,244:435.
[91] Sun Y, Hu X, Luo W, et al.Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries[J]. ACS Nano,2011,5(9):7100.
[92] Yue W, Tao S, Fu J, et al.Carbon-coated graphene-Cr2O3 compo-sites with enhanced electrochemical performances for Li-ion batteries[J]. Carbon,2013,65:97.
[93] Zhang X, Jiang B, Xie Y, et al.One-pot hydrothermal synthesis of Fe3O4/reduced graphene oxide nanocomposite for enhanced lithium storage[J]. Indian J Chem Sect A,2014,53(3):265.
[94] Zhu Y, Lv X, Zhang L, et al.Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode[J]. Electrochim Acta,2016, 215:247.
[95] Cao K, Liu H, Xu X, et al.FeMnO3: A high-performance Li-ion battery anode material[J]. Chem Commun,2016,52(76):11414.
[96] Bie C, Pei J, Chen G, et al.Hierarchical Zn3V3O8/C composite microspheres assembled from unique porous hollow nanoplates with superior lithium storage capability[J]. J Mater Chem A, 2016,4(43):17063.
[97] Xia H, Zhu D, Fu Y, et al.CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries[J]. Electrochim Acta,2012,83:166.
[98] Fei L, Williams B P, Yoo S H, et al.A general approach to fabricate free-standing metal sulfide@carbon nanofiber networks as li-thium ion battery anodes[J]. Chem Commun,2016, 52(7):1501.
[99] Zhang K, Park M, Zhou L, et al.Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries[J]. Angew Chem Int Ed,2016,55(41):12822.
[100] Yu L, Yang J F, Lou X W D. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage[J]. Angew Chem Int Ed,2016,55(43):13422.
[101] Wang Z, Chen T, Chen W, et al.CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries[J]. J Mater Chem A,2013,1(6):2202.
[102] Hwang H, Kim H, Cho J.MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Lett,2011,11(11):4826.
[103] Tian R, Wang W, Huang Y, et al.3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes[J]. J Mater Chem A,2016,4(34):13148.
[104] Mahmood N, Zhang C, Hou Y.Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small,2013,9:1321.
[105] Yue Y, Han P, He X, et al.In situ synthesis of a graphene/tita-nium nitride hybrid material with highly improved performance for lithium storage[J]. J Mater Chem,2012,22(11):4938.
[106] Ren H, Sun J, Yu R, et al.Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries[J]. Chem Sci, 2016,7(1):793.
[107] Balogun M, Zhu Y, Qiu W, et al.Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries[J]. ACS Appl Mater Interfaces,2015,7(46):25991.
[108] Tang Y, Liu L, Zhao H, et al.Porous CNT@Li4Ti5O12 coaxial nanocables as ultrahigh power and long life anode materials for li-thium ion batteries[J]. J Mater Chem A,2016,4(6):2089.
[109] Peng L, Zhang H, Fang L, et al.Novel peapoded Li4Ti5O12 nano-particles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures[J]. Nanoscale,2016,8(4):2030.
[110] Rahman M M, Wang J, Hassan M F, et al.Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries[J]. Adv Energy Mater,2011,1(2):212.
[111] Chen C, Huang Y, An C, et al.Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries[J]. Chemsuschem, 2015,8(1):114.
[112] Liao J, Chabot V, Gu M, et al.Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries[J]. Nano Energy,2014,9:383.
[113] Ding S, Chen J S, Luan D, et al.Graphene-supported anatase TiO2 nanosheets for fast lithium storage[J]. Chem Commun,2011,47(20):5780.
[114] Li W, Wang F, Liu Y, et al.General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage[J]. Nano Lett,2015,15(3):2186.
[115] Kong D, Ren W, Luo Y, et al.Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life[J]. J Mater Chem A,2014,2(47):20221.
[116] Mao S, Huang X, Chang J, et al.One-step, continuous synthesis of a spherical Li4Ti5O12/graphene composite as an ultra-long cycle life lithium-ion battery anode[J]. NPG Asia Mater,2015,7:e224.
[1] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[2] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[5] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[6] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[7] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[8] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[9] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[10] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[11] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[12] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[13] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[14] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[15] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed