Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23120197-5    https://doi.org/10.11896/cldb.23120197
  无机非金属及其复合材料 |
Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究
邢建祥1,2, 杨延朴2, 杨集舜2, 徐越2, 杨廷海1,*, 杨刚2,*
1 江苏理工学院化学化工学院江苏省贵金属深加工技术及应用重点建设实验室, 江苏 常州 213000
2 常熟理工学院材料工程学院江苏省先进功能材料重点实验室, 江苏 常熟 215500
Structural Modification and Electrochemical Performance of Al-doped LiNi0.5Co0.2Mn0.3O2 Materials
XING Jianxiang1,2, YANG Yanpu2, YANG Jishun2, XU Yue2, YANG Tinghai1,*, YANG Gang2,*
1 Jiangsu Laboratory of Precious Metals Processing Technology and Application, School of Chemistry and Chemical Engineering, Jiangsu University of Techno-logy, Changzhou 213000, Jiangsu, China
2 Jiangsu Key Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
下载:  全 文 ( PDF ) ( 18422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三元正极材料LiNi0.5Co0.2Mn0.3O2(NCM523)由于其适中的价格和高能量密度而广受关注,但低循环稳定性使其商业化应用受限。本研究以Al为掺杂元素,采用共沉淀结合高温固相的方法制备不同数量的Al原子取代Mn位的三元NCM523微米颗粒型正极材料。结果表明,适量的Al掺杂可以增强过渡金属层的稳定性,显著改善NCM523材料循环稳定性差的问题。Al掺杂量满足Al/Li物质的量比为7%时获得了最佳的电化学性能,在2.7~4.5 V、0.1C倍率下首次放电比容量为165.7 mAh·g-1,经50次循环后衰减为134.3 mAh·g-1,容量保持率为81.05%。高温(55 ℃)环境下,Al/Li物质的量比为7%的样品依然保持最佳的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢建祥
杨延朴
杨集舜
徐越
杨廷海
杨刚
关键词:  锂离子电池  LiNi0.5Co0.2Mn0.3O2  Al掺杂  循环稳定性    
Abstract: The ternary cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) has attracted much attention due to its moderate price and high energy density. Nevertheless, the low cyclic stability of NCM523 has hindered its commercial application. In this work, a series of modified NCM523 cathode materials in which various amounts of Al atoms substituted for Mn atoms were prepared by a hybridized method combining co-precipitation and high-temperature sintering. The results showed that the appropriate dosage of Al could enhance the stability of the transition metal layer and significantly improve the poor cyclic stability of NCM523 material. The best electrochemical performance was obtained when an Al dosage of 7% molar ratio (Al to Li) was adopted, as it provided a discharge specific capacity of 165.7 mAh·g-1 within the voltage range of 2.7—4.5 V at 0.1C current density, which deteriorated to 134.3 mAh·g-1 after 50 cycles, with 81.05% capacity retention. At the high-temperature (55 ℃) condition, the sample with 7% Al/Li molar ratio still maintained the best electrochemical performance.
Key words:  lithium-ion battery    LiNi0.5Co0.2Mn0.3O2    Al doping    cyclic stability
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51802030);江苏省高等学校自然科学研究项目(23KJA430007)
通讯作者:  *杨廷海,江苏理工学院化学与化工学院教授、硕士研究生导师。2008年博士毕业于南京大学,2011—2014年获葡萄牙FCT资助在葡萄牙阿威罗大学做博士后。目前主要研究MOF材料的设计合成及其在光催化、电催化、传感等领域的应用,工业循环冷却水处理,包括缓蚀阻垢剂的研发、杀菌剂的研发。yangtinghai@jsut.edu.cn;杨刚,常熟理工学院材料工程学院教授、博士研究生导师。1995年郑州大学化学系本科毕业,1999年广西大学化学化工学院硕士毕业后到常熟理工学院化学系工作至今;2002—2005南京大学化学化工学院博士;2007—2008麻省理工学院材料工程学院博士后,从事锂电池材料研究;2010—2013葡萄牙阿威罗大学锂电池安全项目研究员。目前主要从事二次锂电池材料、超级电容等新型化学储电材料等方面的研究工作。gyang@cslg.edu.cn   
作者简介:  邢建祥,2021年6月毕业于河南工业大学,获得工学学士学位。目前在江苏理工学院资源与环境工程学院攻读硕士研究生,主要研究领域为锂离子电池正极材料的制备及其改性。
引用本文:    
邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
XING Jianxiang, YANG Yanpu, YANG Jishun, XU Yue, YANG Tinghai, YANG Gang. Structural Modification and Electrochemical Performance of Al-doped LiNi0.5Co0.2Mn0.3O2 Materials. Materials Reports, 2025, 39(1): 23120197-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120197  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23120197
1 Ko G, Jeong S, Park S, et al. Energy Storage Materials, 2023, 60, 102840.
2 Meng J K, Qu G, Huang Y H. eTransportation, 2023, 16, 100233.
3 Xie K, Zheng C M, Li Y J, et al. Journal of Inorganic Materials, 2021, 36(2), 175.
4 de Biasi L, Schwarz B, Brezesinski T, et al. Advanced Materials, 2019, 31(26), 1900985.
5 Chen Y H, Tian X L. Journal of Materials and Metallurgy, 2023, 22(6), 566 (in Chinese).
陈彦恒, 田小龙. 材料与冶金学报, 2023, 22(6), 566.
6 Luo C G, Zhu L J, Liu B Z, et al. Journal of Inorganic Materials, 2022, 37(9), 1023.
7 Yao W L, Zhang H J, Zhong S W, et al. Journal of Inorganic Materials, 2021, 36(7), 718.
8 Yan J Q, Huang H, Tong J F, et al. Interdisciplinary Materials, 2022, 1(3), 330.
9 Wang L Z, Qin J, Bai Z M, et al. Small Structures, 2022, 3(7), 2100233.
10 Xi X S, Fan YY, Liu Y C, Chen Z, et al. Journal of Alloys and Compounds, 2021, 872, 159664.
11 Sallard S, Billaud J, Sheptyakov D, et al. ACS Applied Energy Materials, 2020, 3(9), 8646.
12 Chen X, Yang C L, Huang J L, et al. Materials Reports, 2023, 37(13), 21070223 (in Chinese).
陈喜, 杨春利, 黄江龙, 等. 材料导报, 2023, 37(13), 21070223.
13 Hou Y Z, Ren Y B, Shi T S, et al. Journal of Alloys and Compounds, 2023, 939, 168778.
14 Dang R X, Qu Y D, Ma Z K, et al. The Journal of Physical Chemistry C, 2021, 126(1), 151.
15 Kebede M A. Current Opinion in Electrochemistry, 2023, 39, 101261.
16 Wang G, Fearn T, Wang T Y, et al. ACS Central Science, 2021, 7(9), 1551.
17 Wang J L, Liu C J, Wang Q, et al. Journal of Colloid and Interface Science, 2022, 628, 338.
18 Zhang B, Cheng L, Deng P, et al. Journal of Alloys and Compounds, 2021, 872, 159619.
19 Ko G, Park S, Kim W, et al. Journal of Alloys and Compounds, 2022, 925, 166678.
20 Liu W, Li X F, Xiong D B, et al. Nano Energy, 2018, 44, 111.
21 Yu W H, Zhao L Y, Wang Y Y, et al. Journal of Alloys and Compounds, 2023, 947, 169481.
22 Li J, Zhong W T, Deng Q, et al. Advanced Functional Materials, 2023, 33(24), 2300127.
23 Michael Y, Wangda L, Manthiram A. Chemistry of Materials, 2022, 34(2), 629.
24 Jeong M, Kim H, Lee W, et al. Journal of Power Sources, 2020, 474, 228592.
25 Gao D C, Huang Y W, Dong H L, et al. Small, 2023, 19(5), 2205122.
26 Lv Y T, Cheng X, Qiang W J, et al. Journal of Power Sources, 2020, 450, 227718.
27 Zhang C F, Wan J J, Li Y X, et al. Journal of Materials Chemistry A, 2020, 8(14), 6893.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[3] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[4] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[5] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[6] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[7] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[8] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[9] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[10] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[11] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[12] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[13] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[14] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[15] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed