Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22110030-9    https://doi.org/10.11896/cldb.22110030
  无机非金属及其复合材料 |
锂离子电池硅碳复合负极结构的研究进展
吴琼1,2, 许咏杰1, 钟展雄1, 梁俊杰1, 李垚2,*
1 广东光华科技股份有限公司,广东 汕头 515061
2 哈尔滨工业大学航天学院,复合材料研究所,哈尔滨 150001
Progress of Silicon Carbon Composite Anode Structure for Lithium-ion Batteries
WU Qiong1,2, XU Yongjie1, ZHONG Zhanxiong1, LIANG Junjie1, LI Yao2,*
1 Guangdong Guanghua Technology Co., Ltd., Shantou 515061, Guangdong, China
2 Institute of Composite Materials, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 27879KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池具有能量密度高、倍率性能好、循环寿命长、自放电率低等优点,是目前主要的电化学储能设备。商用锂离子电池负极材料为石墨,但石墨的低理论容量限制了锂离子电池性能的进一步提升。硅储量丰富,具有高理论容量和稳定工作电压等特点,是新一代锂离子电池最有前景的负极材料。硅基负极存在体积膨胀效应大、首次库仑效率低、电导率低和固体电解质界面膜不稳定等缺点,导致硅基负极循环稳定性较差,严重阻碍了其实际应用。通过具有良好稳定性和高电导率的碳修饰硅基负极制备硅碳负极能够有效克服上述问题,硅碳负极作为一种高理论容量的材料更有规模化商业前景。本文根据硅碳负极的结构设计,将近年来研究的硅/碳负极材料分为零维-纳米颗粒、一维-纳米线和纳米管、二维-层状结构和三维-微米级球体材料,并对不同结构的硅碳复合负极材料的结构和电化学性能进行了对比讨论。此外,本文还总结了现有硅/碳复合负极设计的进展和局限性,并展望了该领域的工业化前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴琼
许咏杰
钟展雄
梁俊杰
李垚
关键词:  锂离子电池  负极材料  硅碳  复合结构    
Abstract: Lithium-ion batteries have the advantages of high energy density, good rate performance, long cycle life and low self-discharge rate, and are currently the most important type of mobile energy storage. The anode of commercial batteries is mainly made of graphite, and its theoretical capacity is low, which is the main bottleneck limiting the capacity of lithium-ion batteries. Silicon, on the other hand, is characterized by high theoretical capacity, suitable operating voltage, high natural abundance, etc. Therefore, it is a typical electrode material for the new generation of lit-hium-ion batteries. However, due to the large volume changes of silicon anodes during charging and discharging, low initial Coulombic efficiency, relatively poor electrical conductivity, and unstable solid electrolyte interface, silicon-based anodes have significant stability problems that hinder practical applications. To solve these problems, modifying silicon anodes with carbon is a more commercial approach. In this paper, the silicon/carbon anode materials in recent years are divided into 0D-nanoparticles, 1D-nanowires and nanotubes, 2D-nanosheets and 3D-micron spheres according to the structure and size of silicon materials, and the structures and electrochemical properties of carbon-based silicon/carbon compo-sites are discussed. In addition, the progress and limitations of the existing silicon/carbon composite anodes are summarized and the prospects for industrialization in this field are highlighted.
Key words:  lithium battery    anode material    silicon carbon    composite structure
发布日期:  2024-06-25
ZTFLH:  TQ152  
基金资助: 部委科研项目
通讯作者:  *李垚,哈尔滨工业大学复合材料与结构研究所教授、博士研究生导师,科技部“先进复合材料国际联合研究中心”负责人,长期从事功能复合材料的研究,设计和研发新一代具有光、热调控功能的复合材料,为近空间飞行器光热防护、热控材料提供新概念、新思路和新工艺。作为负责人先后承担国家自然科学基金重大研究计划项目、国家自然科学基金重大国际合作项目、国家863重大专项、科技部国际合作项目等30余项。发表论文200余篇,授权国家发明专利100余项,获省部级科技奖励4项,出版专著3部。yaoli@hit.edu.cn   
作者简介:  吴琼,分别于2016年3月和2019年12月在德国克劳斯塔尔工业大学(TU Clausthal)获得理学硕士学位和博士学位,现为哈尔滨工业大学和光华科技股份有限公司联合培养博士后,在李垚教授的指导下进行研究,研究领域主要为电子电镀和新能源材料。
引用本文:    
吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
WU Qiong, XU Yongjie, ZHONG Zhanxiong, LIANG Junjie, LI Yao. Progress of Silicon Carbon Composite Anode Structure for Lithium-ion Batteries. Materials Reports, 2024, 38(11): 22110030-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110030  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22110030
1 Pfenninger S, Hawkes A, Keirstead J. Renewable and Sustainable Energy Reviews, 2014, 33, 74.
2 Horowitz M. In:IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2014, pp. 10.
3 Liu C, Li F, Ma F, et al. Advanced Energy Materials, 2010, 22(8), 28.
4 Winter M, Barnett B, Xu K. Chemical Reviews, 2018, 118(23), 11433.
5 Cheng H, Shapter J G, Li Y Y, et al. Journal of Energy Chemistry, 2021, 57, 451.
6 Xing B, Bao T, Li X, et al. Materials Reports, 2020, 34(15), 15063 (in Chinese).
刑宝林, 鲍倜傲, 李旭升, 等. 材料导报, 2020, 34(15), 15063.
7 Ellabban O, Abu-Rub H, Blaabjerg F. Renewable and Sustainable Energy Reviews, 2014, 39, 748
8 Hill J O, Wyatt H R, Peters J C. Circulation, 2012, 126(1), 126.
9 Joselin H G M, Iniyan S, Sreevalsan E, et al. Renewable and Sustainable Energy Reviews, 2007, 11(6), 1117.
10 Blanco M I. Renewable and Sustainable Energy Reviews, 2009, 13(6-7), 1372.
11 Blomgren G E. Journal of the Electrochemical Society, 2016, 164(1), 5019.
12 Wang Y, Ruan W, Tang R, et al. Materials Reports, 2019, 33(18), 3021 (in Chinese).
王英, 阮威, 唐仁衡, 等. 材料导报, 2019, 33(18), 3021.
13 Liu K, Liu Y Y, Lin D C, et al. Science Advances, 2018, 4(6), eaas9820.
14 Lu Y, Chen J. Nature Reviews Chemistry, 2020, 4(3), 127.
15 Manthiram A. ACS Central Science, 2017, 3(10), 1063.
16 Nayak P K, Yang L T, Brehm W, et al. Angew Chemie International Edition, 2018, 57(1), 102.
17 Xu T, Yan G, Wang K, et al. Micronanoelectronic Technology, 2022, 59(11), 1153 (in Chinese).
徐天齐, 闫工芹, 王康, 等. 微纳电子技术, 2022, 59(11), 1153.
18 Li X, Sun X H, Hu X D, et al. Nano Energy, 2020, 77, 105143.
19 Kubota K, Dahbi M, Hosaka T, et al. Chemical Record, 2018, 18(4), 459.
20 Kim T, Song W T, Son D Y, et al. Journal of Materials Chemistry A, 2019, 7(7), 2942.
21 Choudhury S, Archer L A. Advanced Electronic Materials, 2016, 2(2), 1500246.
22 Zhao L, Wang H, Xie Q, et al. Materials Reports, 2020, 34(7), 7026 (in Chinese).
赵立敏, 王惠亚, 解启飞, 等. 材料导报, 2020, 34(7), 7026.
23 Oda F H, Borteiro C, da Graca R J, et al. Acta Tropica, 2016, 164, 150.
24 Randau S, Weber D A, Kötz O, et al. Nature Energy, 2020, 5(3), 259.
25 Schipper F, Aurbach D. Russian Journal of Electrochemistry, 2016, 52(12), 1095.
26 Shi J, Jiang X S, Ban B Y, et al. Electrochimica Acta, 2021, 381, 138269.
27 Kim H, Cho J. Nano Letters, 2008, 8(11), 3688.
28 Hou G L, Cheng B L, Yang Y J, et al. ACS Nano, 2019, 13(9), 10179.
29 Pan F, Shen L, Tong L, et al. Materials Reports, 2020, 34(Z1), 132 (in Chinese).
潘福森, 沈龙, 童磊, 等. 材料导报, 2020, 34(Z1), 132.
30 Whittingham M S. Nano Letters, 2020, 20(12), 8435.
31 Kraytsberg A, Ein-Eli Y. Advanced Energy Materials, 2016, 6(21), 1600655.
32 Wu F X, Maier J, Yu Y. The Royal Society of Chemistry, 2020, 49(5), 1569.
33 Xin F X, Whittingham M S. Electrochemical Energy Reviews, 2020, 3(4), 643.
34 Yao X Y, Liu D, Wang C S, et al. Nano Letters, 2016, 16(11), 7148.
35 Zuo X X, Zhu J, Müller-Buschbaum P, et al. Nano Energy, 2017, 31, 113.
36 Liu D, Ma J, Gao L, et al. Chinese Journal of Rare Metals, 2022, 46(9), 1125(in Chinese).
刘大进, 麻景淇, 高凌峰, 等. 稀有金属, 2022, 46(9), 1125.
37 Batool S, Idrees M, Kong J, et al. Journal of Alloys and Compounds, 2020, 832, 154644.
38 Hu X Q, Huang S M, Hou X H, et al. Silicon, 2017, 10(4), 1443.
39 Yang Z W, Yang Y, Guo H J, et al. Ionics, 2018, 24, 3405.
40 Xie Q X, Qu S P, Zhao P. Journal of Electroanalytical Chemistry, 2021, 884, 115074.
41 Huang Y H, Li W W, Peng J, et al. Energy & Fuels, 2021, 35(16), 13491.
42 Hou L, Zheng H Y, Cui R W, et al. Microporous and Mesoporous Materials, 2019, 275, 42.
43 An Y L, Tian Y, Wei H, et al. Advanced Functional Materials, 2020, 30(9), 1908721.
44 Liao L X, Ma T, Xiao Y, et al. Journal of Alloys and Compounds, 2021, 873, 159700.
45 Liu H B, Chen Y, Jiang B, et al. Dalton Transactions, 2020, 49(17), 5669.
46 Zeferino G I, Valenzuela-Muñiz A M, Gauvin R, et al. Diamond and Related Materials, 2020, 104, 107743.
47 Wang H, Fu J, Wang C, et al. Energy & Environmental Science, 2020, 13, 848.
48 Han N, Li J, Wang X, et al. Nanomaterials, 2021, 11(3), 699.
49 Gao R S, Tang J, Zhang K, et al. Nano Energy, 2020, 78, 105341.
50 Tong L, Wang P, Fang W Z, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29242.
51 Cong R, Choi J Y, Song J B, et al. Scientific Reports, 2021, 11(1), 1283.
52 Kim S C, Huang W, Zhang Z, et al. MRS Bulletion, 2022, 2022(47), 127.
53 Jia H P, Li X L, Song J H, et al. Nature Communications, 2020, 11, 1474.
54 Liu F, Liu Y X, Wang E Y, et al. Electrochimica Acta, 2021, 393, 139041.
55 Chae S, Xu Y, Yi R, et al. Advanced Materials, 2021, 33(40), 2103095.
56 Yang Y, Lu Z J, Xia J, et al. Chemical Engineering Science, 2021, 229, 116054.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[3] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[4] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[5] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[6] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[7] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[8] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[9] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[10] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[11] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[12] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[13] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[14] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[15] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed