Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080150-10    https://doi.org/10.11896/cldb.20080150
  无机非金属及其复合材料 |
纳米复合结构对VO2相变特性的影响
谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生
上海电力大学数理学院,上海 200120
Effects of Nanocomposite Structure on Phase Transition Characteristics of VO2
XIE Zhongzhou, LI Zhonghao, LU Hao, WANG Ying, LIU Yongsheng
College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200120, China
下载:  全 文 ( PDF ) ( 6106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化钒具有良好的半导体-金属可逆相变特性,相变过程中伴随着剧烈的光学、电学等方面的变化。在常温下,二氧化钒为单斜晶系结构(M相);当温度达到相变温度以下时,二氧化钒的晶型变成四方晶红石结构(R相);当温度降低到相变温度以下时,二氧化钒的晶型又变回单斜晶系结构(M相)。这种典型可逆热色特征使二氧化钒成为当前建筑用智能窗材料的最佳选择。近些年来VO2的制备方法已经基本成熟,但是性能的优化一直是研究的重点。因此,本文重点综述了几种不同的VO2基纳米复合结构对其相变特性的影响,主要包括构建核壳结构、掺杂和多层薄膜结构三个方面,为推进VO2薄膜智能窗的进一步优化提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢忠洲
李钟昊
逯浩
王莹
刘永生
关键词:  VO2  相变  热致变色  纳米复合结构  智能窗    
Abstract: Vanadium dioxide has good semiconductor-metal reversible phase transition characteristics, and the phase transition process is accompanied by drastic optical and electrical changes. At room temperature, vanadium dioxide has a monoclinic structure (M phase). When the phase transition temperature is reached, the crystal form of vanadium dioxide changes to a tetragonal redstone structure (R phase). When the temperature drops to the phase transition temperature, the crystal form changed back to the monoclinic structure (M phase).This typical reversible thermochromic feature makes vanadium dioxide the best choice for current building smart window materials.The preparation method of VO2 has been mature in recent years, but the optimization of performance has always been the focus of research. Therefore, the influence of several different VO2-based nanocomposite structures on their phase transition characteristics is mainly reviewed, including three aspects (core-shell structure, doping and multilayer film structure). It provides a basis for advancing the further optimization of VO2 thin-film smart windows.
Key words:  VO2    phase transition    thermochromism    nanocomposite structure    smart windows
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  O734  
基金资助: 国家自然科学基金(51502168;11504227);上海市科学技术委员会(19DZ2271100)
通讯作者:  2006000081@shiep.edu.cn   
作者简介:  谢忠洲,2018年6月毕业于华北水利水电大学,获得工学学士学位。现为上海电力大学数理学院硕士研究生,在王莹副教授的指导下进行研究。目前主要研究领域为VO2相变特性的优化。
王莹,上海电力大学副教授,硕士研究生导师。2014年3月毕业于上海交通大学,物理与天文系,目前在复旦大学材料与科学流动站作为博士后合作研究者。主要从事超导材料和半导体微纳米管应用领域的研究工作。
引用本文:    
谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
XIE Zhongzhou, LI Zhonghao, LU Hao, WANG Ying, LIU Yongsheng. Effects of Nanocomposite Structure on Phase Transition Characteristics of VO2. Materials Reports, 2022, 36(8): 20080150-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080150  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080150
1 Kamalisarvestani M, Saidur R, Mekhilef S, et al. Renewable and Sustai-nable Energy Reviews,2013,26,353.
2 Kanu S S, Binions R. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences,2009,466(2113),19.
3 Powell M J, Quesada-Cabrera R, Taylor A, et al. Chemistry of Materials,2016,28(5),1369.
4 Ruben B, Bjørn P J, Arild G. Solar Energy Materials & Solar Cells,2010,94,87.
5 Zeng W, Chen N, Xie W. CrystEngComm,2020,22(5),851.
6 Kim H N, Yang S. Advanced Functional Materials,2019,30(2),1902597.
7 Morin F J. Physical Review Letters,1959,3(1),34.
8 Elizabeth E. Applied Optics,1991,30(19),2782.
9 Adler D. Reviews of Modern Physics,1968,40(4),714.
10 Mott N F. Reviews of Modern Physics,1968,40(4),677.
11 Soltani M, Chaker M, Haddad E, et al. In: 17th International Confe-rence on Optical Fibre Sensors. Bellingham, WA,2005,pp.880.
12 Lysenko S, Rua A J, Vikhnin V, et al. Applied Surface Science,2006,252(15),5512.
13 Kang M, Kim S W, Ryu J W. Journal of Applied Physics,2015,118(3),035105.
14 Troy D M, Ivan P P, Martyn E, et al. Chemistry of Materials,2004,16,744.
15 Lee J S, Ortolani M, Schade U, et al. Applied Physics Letters,2007,91(13),133509.
16 Evgheni S, Yigal L, Andrei K. Nano Letters,2009,9(6),2322.
17 Holsteen A, Kim I S, Lauhon L J. Nano Letters,2014,14(4),1898.
18 Babulanam S M, Erikssot S N, Niklasson G A, et al. Solar Energy Materials & Solar Cells,1987,16,347.
19 Cui Y, Ke Y, Liu C, et al. Joule,2018,2(9),1707.
20 Xu F, Cao X, Luo H, et al. Journal of Materials Chemistry C,2018,6(8),1903.
21 Liang X, Chen M, Wang Q, et al. Journal of Materials Chemistry C,2018,6(26),7054.
22 Liu H, Wan D, Ishaq A, et al. ACS Applied Materials & Interfaces,2016,8(12),7884.
23 Zhu M, Qi H, Wang B, et al. Journal of Alloys and Compounds,2018,740,844.
24 George A. Acta Chemica Scandinavica,1954,8,1599.
25 Haverkort M W, Hu Z, Tanaka A, et al. Physical Review Letters,2005,95(19),196404.
26 Luo M H, Xu M J, Huang Q W, et al. Acta Physica Sinica,2016,65(4),047201(in Chinese).
罗明海,徐马记,黄其伟,等.物理学报,2016,65(4),047201.
27 Goodenough J B. Journal of Solid State Chemistry,1971,3,490.
28 Li M, Magdassi S, Gao Y, et al. Small,2017,13(36),1701147.
29 Chang T C, Cao X, Li N, et al. ACS Applied Materials & Interfaces,2017,9,26029.
30 Ghosh C R, Paria S. Chemical Reviews,2012,112(4),2373.
31 Ke Y, Balin I, Wang N, et al. ACS Applied Materials & Interfaces,2016,8(48),33112.
32 Li R, Ji S, Li Y, et al. Materials Letters,2013,110,241.
33 Lan S D, Chang C J, Huang C F, et al. RSC Advances,2015,5(90),73742.
34 Li W, Ji S, Sun G, et al. New Journal of Chemistry,2016,40(3),2592.
35 Zhang Y, Tan X, Huang C, et al. Materials Research Innovations,2015,19(4),295.
36 Ji C, Wu Z, Lu L, et al. Journal of Materials Chemistry C,2018,6(24),6502.
37 Jian J, Wang X, Misra S, et al. Advanced Functional Materials,2019,29(36),1903690.
38 Ersundu A E, Çelikbilek E M, Dogğan E, et al. Thin Solid Films,2020,700,137919.
39 Hu L, Tao H, Chen G, et al. Journal of Sol-Gel Science and Technology,2015,77(1),85.
40 Piccirillo C, Binions R, Parkin I P. European Journal of Inorganic Che-mistry,2007,2007(25),4050.
41 Shen N, Chen S, Chen Z, et al. Journal of Materials Chemistry A,2014,2(36),15087.
42 Chen S, Dai L, Liu J, et al. Physical Chemistry Chemical Physics,2013,15(40),17537.
43 Cao X, Wang N, Magdassi S, et al. Science of Advanced Materials,2014,6(3),558.
44 Wang N, Duchamp M, Dunin-Borkowski R E, et al. Langmuir,2016,32(3),759.
45 Wang N, Chew S N T, Duchamp M, et al. RSC Advances,2016,6(54),48455.
46 Wang N, Liu S, Zeng X T, et al. Journal of Materials Chemistry C,2015,3(26),6771.
47 Burkhardt W, Christmann T, Franke S, et al. Thin Solid Films,2002,402,226.
48 Xu Y, Huang W, Shi Q, et al. Journal of Sol-Gel Science and Technology,2012,64(2),493.
49 Cui Y, Shi S, Chen L, et al. Physical Chemistry Chemical Physics,2015,17(32),20998.
50 Cui Y, Wang Y, Liu B, et al. RSC Advances,2016,6(69),64394.
51 Zhang J, He H, Xie Y, et al. Physical Chemistry Chemical Physics,2013,15(13),4687.
52 Dietrich M K, Kramm B G, Becker M, et al. Journal of Applied Physics,2015,117(18),185301
53 Dai L, Chen S, Liu J, et al. Physical Chemistry Chemical Physics,2013,15(28),11723.
54 Ji C, Wu Z, Wu X, et al. Solar Energy Materials and Solar Cells,2018,176,174.
55 Long S, Cao X, Sun G, et al. Applied Surface Science,2018,441,764.
56 Sun G, Cao X, Li X, et al. Solar Energy Materials and Solar Cells,2017,161,70.
57 Chang T, Cao X, Dedon L R, et al. Nano Energy,2018,44,256.
58 Long S, Zhou H, Bao S, et al. RSC Advances,2016,6(108),106435.
59 Zheng J, Bao S, Jin P T. Nano Energy,2015,11,136.
[1] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[2] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[3] 李天天, 李宝让, 刘文洁, 赵鹏翔, 杜小泽. 固-固相变储热及其材料制备和性能优化技术(Ⅰ)[J]. 材料导报, 2022, 36(5): 20080203-15.
[4] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[5] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[6] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[7] 王书明, 张华, 左玉婷, 曹瑞军. 钴的相变织构及微观结构研究[J]. 材料导报, 2021, 35(Z1): 378-380.
[8] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[9] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[10] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[11] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[12] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[13] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[14] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[15] 阎勇, 李萌蘖, 卜恒勇, 郑善举. S34MnV钢的连续冷却转变行为及相变动力学研究[J]. 材料导报, 2021, 35(20): 20129-20136.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed