Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20080203-15    https://doi.org/10.11896/cldb.20080203
  高分子与聚合物基复合材料 |
固-固相变储热及其材料制备和性能优化技术(Ⅰ)
李天天1, 李宝让1, 刘文洁1, 赵鹏翔2, 杜小泽1
1 华北电力大学,电站能量传递转化与系统教育部重点实验室,北京 102206
2 国网综合能源服务集团有限公司,北京 100052
Fabrication and Performance Optimization Technology of Materials for Solid-Solid Phase Change Thermal Energy Storage (Ⅰ)
LI Tiantian1, LI Baorang1, LIU Wenjie1, ZHAO Pengxiang2, DU Xiaoze1
1 North China Electric Power University Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, Beijing 102206, China
2 State Grid Integrated Energy Service Group Co., Ltd, Beijing 100052, China
下载:  全 文 ( PDF ) ( 6694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变储热技术作为当前储热研究领域中的重点,在能源利用效率的提高方面效果显著。作为高效储热技术之一,固-固相变储热主要通过固体相变实现热量的吸收和释放。相比于固-液相变储热,固-固相变储热相变过程中体积变化小,同时无明显相分离、泄露等现象,在节能、环保和新能源等诸多领域中具有巨大的发展潜力。
有机固-固相变储热材料主要包括高分子聚合物、多元醇以及层状钙钛矿,其中聚合物类主要由“软相”大分子借助化学键连接“硬相”聚合物骨架形成。“软相”作为相变过程的主体,升温至转变温度发生固-液转变;而“硬相”骨架限制其宏观流动,起到维持固体形态的作用。多元醇在低温下呈现层状晶体结构,层间分子通过氢键相连接,进行固相转变时部分氢键断裂,分子转向面心立方晶体结构。层状钙钛矿则是由有机层的长链烷烃以及无机层的金属配位四面体[MX42-]交替组合而成的夹层状晶体结构,其固-固相变机理与高聚物相似,即有机层的长烷基链进行有序-无序转变,而无机层结构保持不变。
现阶段在有机固-固相变储热材料的制备技术方面,聚合物类材料主要通过接枝共聚、嵌段共聚等方法,以聚乙二醇为相变介质借助化学键结合到聚合物骨架上而形成;多元醇适用于中高温工作条件下,其相变温度和相变焓与所含氢键数相关,通过多元复合配比可调整其热物性能;层状钙钛矿的热物性取决于其组成烷基链的长度,可选择制备多元体系以拓宽相变温度范围。近年来,为满足实际应用中对高储热功率的要求,除了致力于开发新型相变储热材料外,研究人员对相变材料的导热强化技术也在不断改进中。
本文基于固-固相变的机理,针对当前国内外固-固相变储热技术的研究,分别从相变行为的特征、材料制备、性能优化技术和应用等方面对固-固相变储热技术进行了详细的总结和分析。并在此基础上,从材料制备和相变机制控制的角度,对固-固相变储热材料研究面临的技术壁垒以及未来的研究方向进行了科学的展望,以期对新型储热材料,尤其是中高温固-固相变储热材料的开发提供有价值的专业参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天天
李宝让
刘文洁
赵鹏翔
杜小泽
关键词:  固-固相变  储热材料  相变机制    
Abstract: Thermal energy storage technology depending upon phase change is the hot spot in the field of heat storage research, which has a significant effect on improving energy utilization efficiency. As one of the high-efficiency thermal energy storage technologies, solid-solid phase change thermal energy storage mainly realizes the absorption and release of heat through solid phase transformation process. Compared with the solid-liquid phase change thermal energy storage, the volume change of solid-solid phase change is smaller, and there is no obvious phase separation and leakage phenomenon. It has attractive development potential in many fields such as energy conservation, environmental protection and new energy.
The organic materials in solid-solid phase change thermal energy storage field mainly include polymer, polyhydric alcohols and layered perovskite. Among them, polymeric phase change materials are mainly formed by the ‘soft phase' macromolecules connected with the ‘hard phase' polymer skeleton by means of chemical bonds. The ‘soft phase' is the main part of the phase transformation process, and the solid-liquid transition occurs when the temperature rises to the transition temperature. The‘hard phase' skeleton restricts its macro flow and plays an important role in maintaining the solid morphology. At low temperature, polyhydric alcohols present a layered crystal structure. The interlayer molecules are connected by hydrogen bonds, and part of the hydrogen bonds break during the solid phase transition, and the molecules change to face centered cubic crystal structure. Layered perovskite is an intercalated crystal structure composed of long chain alkanes in organic layer and metal coordination tetrahedron [MX42-]in inorganic layer. Its solid-solid phase transition mechanism is similar to that of polymer, that is, the long alkyl chain of organic layer undergoes order-disorder transformation, while the inorganic layer structure remains unchanged.
At present, in the preparation technology of organic solid-solid phase change thermal energy storage materials, polymer materials are mainly formed by grafting copolymerization, block copolymerization and other methods, using polyethylene glycol as phase change medium and combining with polymer skeleton by means of chemical bond; polyhydric alcohols are suitable for medium and high temperature working conditions, and their phase transition temperature and enthalpy are related to the number of hydrogen bonds contained, and their thermophysical properties can be adjusted by multi-component composite ratio. The thermophysical properties of layered perovskite depend on the length of alkyl chain, which can be used to prepare the pluralistic system to widen the range of phase transition temperature. In recent years, in order to meet the requirements of high thermal energy storage power in practice, in addition to the development of new phase change materials, the heat conduction enhancement technology of phase change materials is also constantly improved.
Based on current researches published in the opened literatures, the solid-solid thermal energy storage technology was analyzed and summarized in detail from various aspects including the characteristics of phase change behavior,material preparation, performance optimization techno-logy and application, etc. On this basis, from the perspective of material preparation and phase change mechanism control, the technical barriers and future research directions of solid-solid phase change thermal energy storage materials are prospected. The content of this review can provide valuable professional reference for further research in exploring new thermal energy storage materials, especially for the development of medium and high temperature solid-solid phase change thermal energy storage materials.
Key words:  solid-solid phase change    thermal energy storage materials    phase change mechanism
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TK02  
基金资助: 国家电网公司《多能互补分布式能源系统的关键技术研究》项目
通讯作者:  libr@ncepu.edu.cn; duxz@ncepu.edu.cn   
作者简介:  李天天,2019年6月毕业于华北电力大学,获得工学学士学位。现为华北电力大学能源动力与机械工程学院硕士研究生,在李宝让教授的指导下进行研究。目前主要研究领域为固-固相变储热材料。
李宝让,华北电力大学能源动力与机械工程学院教授、博士研究生导师。2004年毕业于清华大学,2006年中科院半导体研究所博士后出站,同年7月就职于华北电力大学至今。目前研究方向为纳米材料合成与器件及储能材料与制备技术。迄今为止,主持/参加国家大型科技研发项目、国家基金、北京市基金等若干项科研项目,在国内外相关领域发表SCI/EI等学术文章近80余篇。
杜小泽,2000年在清华大学获博士学位, 华北电力大学教授、博士生导师、教育部长江学者特聘教授;现任华北电力大学能源动力与机械工程学院院长、电站能量传递转化与系统教育部重点实验室主任;兼任中国电机工程学会副秘书长、中国可再生能源学会常务理事兼储能专委会主任、中国工程热物理学会传热传质学委员会委员、北京热物理与能源工程学会常务理事、International Journal of Thermodynamics编委。主要研究方向为强化传热、太阳能和新能源发电、储能材料与储能技术等。共发表国内外学术期刊论文200余篇,被引用5 800余次。
引用本文:    
李天天, 李宝让, 刘文洁, 赵鹏翔, 杜小泽. 固-固相变储热及其材料制备和性能优化技术(Ⅰ)[J]. 材料导报, 2022, 36(5): 20080203-15.
LI Tiantian, LI Baorang, LIU Wenjie, ZHAO Pengxiang, DU Xiaoze. Fabrication and Performance Optimization Technology of Materials for Solid-Solid Phase Change Thermal Energy Storage (Ⅰ). Materials Reports, 2022, 36(5): 20080203-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080203  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20080203
1 Amrouche S O, Rekioua D, Rekioua T, et al. International Journal of Hydrogen Energy, 2016, 41(45), 20914.
2 Bai Z H, Miao C H, Wang W, et al. Distribution & Utilization, 2019, 36(3), 20(in Chinese).
白中华, 苗常海, 王雯, 等. 供用电, 2019, 36(3), 20.
3 Liang L X, Chen M D, Duan L Q, et al. Thermal Power Generation, 2020, 49(3), 8(in Chinese).
梁立晓, 陈梦东, 段立强, 等. 热力发电, 2020, 49(3), 8.
4 Sun W C, Feng J X, Zhang Z G, et al. Chemical Industry and Enginee-ring Progress, 2020, 39(5), 1824(in Chinese).
孙婉纯, 冯锦新, 张正国, 等. 化工进展, 2020, 39(5), 1824.
5 Hasnain S M. Energy Conversion and Management, 1998, 39(11), 1127.
6 Hasnain S M. Energy Conversion and Management, 1998, 39(11), 1139.
7 Yu X K, Luan J D. Chemical Enterprise Management, 2020(11), 117(in Chinese).
于晓琨, 栾敬德. 化工管理, 2020(11), 117.
8 Hadiya J P, Shukla A K. International Journal of Global Energy Issues, 2018, 41(1-4), 108.
9 Zhang N, Yuan Y P, Cao X L, et al. Advanced Engineering Materials, 2018, 20(6), 1700753.
10 Zhao Y. Theoretical and experimental study on the heat transfer and storage characteristics of phase change materials and cascaded systems. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2018(in Chinese).
赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究. 博士学位论文, 上海交通大学, 2018.
11 Lv P Z, Ding M Y, Liu C Z, et al. Renewable Energy, 2019, 1(131), 911.
12 Ma T T,Li L P, Wang Q W, et al. Journal of Materials Science, 2019, 54(1), 875.
13 Deng Y, He M Y, Li J H. Materials Letters, 2019, 1(234), 17.
14 Su W G, Darkwa J, Kokogiannakis G. Renewable & Sustainable Energy Reviews, 2015, 1(48), 373.
15 Hassan A, Shakeel Laghari M, Rashid Y. Sustainability,2016,8(10),1.
16 Yu S M, Jiang C L, Hang G P, et al. New Chemical Materials, 2002(7), 19(in Chinese).
于少明, 蒋长龙, 杭国培, 等. 化工新型材料, 2002(7), 19.
17 Leng G H, Lan Z P, Ge Z W, et al. Energy Storage Science and Techno-logy, 2015, 4(2), 119(in Chinese).
冷光辉, 蓝志鹏, 葛志伟, 等. 储能科学与技术, 2015, 4(2), 119.
18 Mu S Y, Guo J, Yu C Y, et al. Journal of Macromolecular Science Part A:Pure and Applied Chemistry, 2015, 52(8), 617.
19 Mu S Y, Guo J, Gong Y M, et al. Chinese Chemical Letters, 2015, 26(11), 1364.
20 Shi H F, Li J H, Jin Y M, et al. Materials Chemistry & Physics, 2011, 131(1-2), 108.
21 Sari A, Alkan C, Biçer A, et al. Solar Energy Materials & Solar Cells, 2011, 95(12), 3195.
22 Li Y X, Wu M, Liu R G, et al. Solar Energy Materials & Solar Cells, 2009, 93(8), 1321.
23 Sari A, Alkan C, Lafçi Ö. Solar Energy, 2012, 86(9), 2282.
24 Sari A, Alkan C, Biçer A. Materials Chemistry and Physics, 2012, 133(1), 87.
25 Cao Q, Liu P S. European Polymer Journal, 2006, 42(11), 2931.
26 Peng K L, Chen C Z, Pan W L, et al. Solar Energy Materials and Solar Cells, 2016, 145(3), 238.
27 Chen C Z, Liu W M, Wang H W, et al. Applied Energy, 2015, 152(15), 198.
28 Li W D, Ding E Y. Solar Energy Materials & Solar Cells, 2007, 91(9), 764.
29 Zhou X M. Journal of Applied Polymer Science, 2010, 113(3), 2041.
30 Pielichowska K, Pielichowski K. Polymers for Advanced Technologies, 2011, 22(12), 1633.
31 Tang B T, Yang Z Y, Zhang S F. Journal of Applied Polymer Science, 2012, 125(2), 1377.
32 Peng Y, Wang Z, Chen L G, et al. Guangzhou Chemical Industry, 2013, 41(17), 13(in Chinese).
彭莹, 王忠, 陈立贵, 等. 广州化工, 2013, 41(17), 13.
33 Peng S, Fuchs A, Wirtz R A. Journal of Applied Polymer Science, 2004, 93(3), 1240.
34 Alkan C, Ensari Ö F, Kahraman D. Journal of Applied Polymer Science, 2012, 126(2), 631.
35 Fallahi A, Guldentops G, Tao M J, et al. Applied Thermal Engineering, 2017, 127, 1427.
36 Pielichowski K, Flejtuch K. Polymers for Advanced Technologies, 2002, 13(10-12), 690.
37 Zhong Q, Zhang W, Zhao C F, et al. Guangzhou Chemical Industry, 2016, 44(23), 4(in Chinese).
钟秋, 张威, 赵春芳, 等. 广州化工, 2016, 44(23), 4.
38 Wang Y Q, Zhang H Z, Zhu X L. Advances in Fine Petrochemicals, 2002, 3(11), 24(in Chinese).
王艳秋, 张恒中, 朱秀林. 精细石油化工进展, 2002, 3(11), 24.
39 Su J C, Liu P S. Journal of East China University of Science and Techno-logy (Natural Science Edition), 2006, 32(2), 197(in Chinese).
粟劲苍, 刘朋生. 华东理工大学学报(自然科学版), 2006, 32(2), 197.
40 Guo J, Li N, Xu D Z, et al. Polymer Materials Science & Engineering, 2009, 25(5), 161(in Chinese).
郭静, 李楠, 徐德增, 等. 高分子材料科学与工程, 2009, 25(5), 161.
41 Zhao X H, Wang G F, Li D Y, et al. Chemical Research, 2013, 24(2), 123(in Chinese).
赵新红, 王桂芳, 李东莹, 等. 化学研究, 2013, 24(2), 123.
42 Wang Z, Chen L G, Fu L, et al. New Chemical Materials, 2008, 36(4), 42(in Chinese).
王忠, 陈立贵, 付蕾, 等. 化工新型材料, 2008, 36(4), 42.
43 Zhao X H. Preparation and properties of solid-solid phase change mate-rials and fiber. Master's Thesis, Beijing Institute of Fashion Technology, China, 2012(in Chinese).
赵新红. 固-固相变材料及相变纤维的制备与性能. 硕士学位论文, 北京服装学院, 2012.
44 Zhang M, Na Y, Jiang Z H. Chemical Journal of Chinese Universities, 2005, 26(1), 170(in Chinese).
张梅, 那莹, 姜振华. 高等学校化学学报, 2005, 26(1), 170.
45 Zhang M, Li Q M, Qiu F G, et al. Journal of Functional Materials, 2007, 38(10), 1709(in Chinese).
张梅, 李全明, 邱发贵, 等. 功能材料, 2007, 38(10), 1709.
46 Mou S Y, Guo J, Qi S W, et al. Chemical Journal of Chinese Universities, 2015, 36(12), 2557(in Chinese).
牟思阳, 郭静, 齐善威, 等. 高等学校化学学报, 2015, 36(12), 2557.
47 Gu X H, Li S W, Zheng B, et al. Journal of Functional Polymers, 2012, 25(2), 191(in Chinese).
顾晓华, 李世伟, 郑兵, 等. 功能高分子学报, 2012, 25(2), 191.
48 Duan Y Q, Xi P, Liu R, et al. Synthetic Fiber in China, 2011, 40(9), 13(in Chinese).
段玉情, 西鹏, 刘然, 等. 合成纤维, 2011, 40(9), 13.
49 Duan Y Q, Kang D, Xi P, et al. Textile Science Research, 2012, 23(1), 7(in Chinese).
段玉情, 康丁, 西鹏, 等. 纺织科学研究, 2012, 23(1), 7.
50 Chen Y L, Shao Z Q, Liu Y H. Journal of Functional Materials, 2016, 47(3), 3079(in Chinese).
陈亚亮, 邵自强, 刘燕华. 功能材料, 2016, 47(3), 3079.
51 Zhang H, Wang Q Q, Xiang H X, et al. China Synthetic Resin and Plastics, 2011, 28(6), 30(in Chinese).
张鸿, 王倩倩, 相恒学, 等. 合成树脂及塑料, 2011, 28(6), 30.
52 Zhou X M, Liu Y N. China Synthetic Resin and Plastics, 2012, 29(6), 54(in Chinese).
周晓明, 刘亚楠. 合成树脂及塑料, 2012, 29(6), 54.
53 Li T, Rong X Y, Zhang G Z, et al.In: Conference Record of the 6th China Conference on Functional Materials and Applications. Wuhan, 2007, pp. 3247(in Chinese).
李田, 荣晓义, 张公正, 等. 第六届中国功能材料及其应用学术会议论文集. 武汉, 2007, pp. 3247.
54 Zhu Y, Wen D J. New Building Materials, 2009, 36(12), 16(in Chinese).
祝译, 闻荻江. 新型建筑材料, 2009, 36(12), 16.
55 Zang Y N, Wang Y Q, Zhang X P, et al. Guangdong Chemical Industry, 2014, 41(18), 79(in Chinese).
臧亚南, 王艳秋, 张小萍, 等. 广东化工, 2014, 41(18), 79.
56 Zhou X M, Xie W J. Polymer Materials Science & Engineering, 2014, 30(12), 155(in Chinese).
周晓明, 谢文杰. 高分子材料科学与工程, 2014, 30(12), 155.
57 Thakare K A, Vishwakarma H G, Bhave A G, et al. International Journal of Research in Engineering and Technology, 2015, 4(12), 92.
58 Huang X M, Song B. Shandong Chemical Industry, 2019, 48(16), 65(in Chinese).
黄晓梅, 宋波. 山东化工, 2019, 48(16), 65.
59 Feng L P, Wang M. New Chemical Materials, 2020, 48(11), 135(in Chinese).
冯立品, 王明. 化工新型材料, 2020, 48(11), 135.
60 Wang W, Wang Y, Zhou X Z. China Plastics Industry, 2010, 38(10), 56(in Chinese).
王玮, 汪艳, 周小舟. 塑料工业, 2010, 38(10), 56.
61 Gu Y X, Guan Z M, Yan D M. China Plastics, 2018, 32(6), 53(in Chinese).
谷亚新, 关志猛, 鄢冬茂. 中国塑料, 2018, 32(6), 53.
62 Tong X M, Chen L G, Zhang T. Modern Chemical Industry, 2013, 33(5), 47(in Chinese).
童晓梅, 陈龙刚, 张涛. 现代化工, 2013, 33(5), 47.
63 Wang J, Zhang L, Luo L J, et al. Heat Treatment Technology and Equipment, 2016, 37(5), 1(in Chinese).
王静, 张丽, 罗李娟, 等. 热处理技术与装备, 2016, 37(5), 1.
64 Shi Y, Yang B, Lu H Y, et al. Polymer Materials Science & Enginee-ring, 2017, 33(10), 53(in Chinese).
石优, 杨斌, 陆华阳, 等. 高分子材料科学与工程, 2017, 33(10), 53.
65 Wang Z, Chen L G, Fu L. Plastics, 2012, 41(1), 74(in Chinese).
王忠, 陈立贵, 付蕾. 塑料, 2012, 41(1), 74.
66 Zhao M Y, Zhang Y A, Tang B T. Fine Chemicals, 2020, 37(11), 2182(in Chinese).
赵梦阳, 张宇昂, 唐炳涛. 精细化工, 2020, 37(11), 2182.
67 Wang Y L. Synthesis and properties of polyurethane solid-solid phase change materials. Master's Thesis, Beijing Institute of Fashion Technology, China, 2010(in Chinese).
王玉玲. 聚氨酯固-固相变材料的合成及性能. 硕士学位论文, 北京服装学院, 2010.
68 Wang Y, Tian C R, Lu A, et al. New Chemical Materials, 2013, 41(2), 82(in Chinese).
王宇, 田春蓉, 芦艾, 等. 化工新型材料, 2013, 41(2), 82.
69 Wang Y L, Fu Z Y, Pei G L. Journal of Beijing Institute of Clothing Technology, 2010, 30(4), 1(in Chinese).
王玉玲, 付中玉, 裴广玲. 北京服装学院学报(自然科学版), 2010, 30(4), 1.
70 Wu W H, Huang X Y, Yao R M, et al. Acta Physico-Chimica Sinica, 2017, 33(1), 255(in Chinese).
吴文昊, 黄心宇, 姚锐敏, 等. 物理化学学报, 2017, 33(1), 255.
71 Duan S Y. Preparation of polyurethane solid-solid phase change material and effect of its modified asphalt on temperature regulation.Master's Thesis, Chang'an University, China, 2018(in Chinese).
段诗雨. 聚氨酯固-固相变材料的制备及其改性沥青调温效果研究. 硕士学位论文, 长安大学, 2018.
72 Zhou Y. Preparation and properties of polyurethane-based solid-solid phase change materials. Ph.D. Thesis, University of Science and Technology of China, China, 2019(in Chinese).
周妍. 聚氨酯基固-固相变储能材料的制备及性能研究. 博士学位论文, 中国科学技术大学, 2019.
73 Ye F, Qu J L, Zhong J Y, et al. The Chinese Journal of Process Engineering, 2010, 10(6), 1231(in Chinese).
叶锋, 曲江兰, 仲俊瑜, 等. 过程工程学报, 2010, 10(6), 1231.
74 Gao W F, Lin W X, Liu T, et al. International Journal of Green Energy, 2007, 4(3), 301.
75 Wu K Z, Zhang J J, Liu X D. Bulletin of Science and Technology, 2000, 16(2), 97(in Chinese).
武克忠, 张建军, 刘晓地. 科技通报, 2000, 16(2), 97.
76 Lu B, Gao W L, Zhao H M, et al. Journal of Guyuan Teachers College (Natural Science Edition), 2000, 21(3), 10(in Chinese).
鲁彬, 高文玲, 赵惠敏, 等. 固原师专学报(自然科学版), 2000, 21(3), 10.
77 Xia W G. Journal of Anhui University of Technology (Natural Science), 2003, 20(3), 200(in Chinese).
夏维国. 安徽工业大学学报(自然科学版), 2003, 20(3), 200.
78 Zhang J L, Liu X D, He S M, et al. Chemical Journal of Chinese Universities, 2000, 21(6), 937(in Chinese).
张建玲, 刘晓地, 何书美, 等. 高等学校化学学报, 2000, 21(6), 937.
79 Zhao R X. Chinese Journal of Spectroscopy Laboratory, 2002, 19(3), 307(in Chinese).
赵睿新. 光谱实验室, 2002, 19(3), 307.
80 Sun Y, He S M, Wu K Z, et al. Journal of Hebei Normal University (Natural Science Edition), 2002, 26(3), 277(in Chinese).
孙越, 何书美, 武克忠, 等. 河北师范大学学报(自然科学版), 2002, 26(3), 277.
81 Benson D K, Burrows R W, Webb J D. Solar Energy Materials, 1986, 13(2), 133.
82 Doshi N, Furman M, Rudman R. Acta Crystallographica Section B, 1973, 29(1), 143.
83 Wang X W, Xu H H. Acta Physica Sinica, 2011, 60(3), 136(in Chinese).
王小伍, 徐海红. 物理学报, 2011, 60(3), 136.
84 Dai Y, Tang L M. Chemical World, 2001(12), 662(in Chinese).
戴彧, 唐黎明. 化学世界, 2001(12), 662.
85 Wang Y, Xia T D, Feng H X. Materials Reports, 2011, 25(3), 66(in Chinese).
王毅, 夏天东, 冯辉霞. 材料导报, 2011, 25(3), 66.
86 Xing D Q, Chi G S, Ruan D S, et al. Acta Energiae Solaris Sinica, 1995, 16(2), 131(in Chinese).
邢登清, 迟广山, 阮德水, 等. 太阳能学报, 1995, 16(2), 131.
87 Zhang Z Y, Yang M L. Thermochimica Acta, 1990, 169, 263.
88 Zhang Z Y, Yang M L, Li H P. Thermochimica Acta, 1992, 202, 105.
89 Feng H Y, Liu X D, He S M, et al. Thermochimica Acta, 2000, 348(1-2), 175.
90 Song J H, Ma J S, Li F Y, et al. Acta Energiae Solaris Sinica, 2017, 38(9), 2498(in Chinese).
宋景慧, 马继帅, 李方勇, 等. 太阳能学报, 2017, 38(9), 2498.
91 Mekala P, Kamisetty V, Chien W M, et al. Calphad- computer Coupling of Phase Diagrams & Thermochemistry, 2015, 50, 126.
92 Shi R H, Gantan I, Chandra D, et al. Calphad- computer Coupling of Phase Diagrams & Thermochemistry, 2016, 52, 264.
93 Wang X W, Lu E R, Lin W X. Energy Conversion & Management, 2000, 41(2), 129.
94 Mishra A, Talekar A, Chandra D, et al. Thermochimica Acta, 2012, 535, 17.
95 Shi R H, Chandra D, Mishra A, et al. Calphad- computer Coupling of Phase Diagrams & Thermochemistry, 2017, 59, 61.
96 Mishra A, Talekar A, Shi R H, et al. Calphad- computer Coupling of Phase Diagrams & Thermochemistry, 2014, 46, 108.
97 Yan Q Y, Liang C. Solar Energy, 2008, 82(7), 656.
98 Benson D K, Webb J D, Burrows R W, et al. Solar Energy Research Institute, 1985.
99 Ruan D S, Zhang T P, Zhang D S, et al. Acta Energiae Solaris Sinica, 1994, 15(1), 19(in Chinese).
阮德水, 张太平, 张道圣, 等. 太阳能学报, 1994, 15(1), 19.
100 Fan Y F, Zhang X X. Materials Reports, 2003, 17(7), 50(in Chinese).
樊耀峰, 张兴祥. 材料导报, 2003, 17(7), 50.
101 Son C H, Morehouse J H. Journal of Solar Energy Engineering, 1991, 113(4), 244.
102 Arend H, Huber W, Mischgofsky F H, et al. Journal of Crystal Growth, 1978, 43(2), 213.
103 Busico V, Carfagna C, Salerno V, et al. Solar Energy, 1980, 24(6), 575.
104 Zuo P, Wu K Z, Cui W Z, et al. Journal of Hebei Normal University, 2002, 26(1), 53(in Chinese).
左萍, 武克忠, 崔维真, 等. 河北师范大学学报, 2002, 26(1), 53.
105 Kang Y Z, Hao Z F, Zhang C X, et al. Chemical Research and Application, 2004, 16(6), 761(in Chinese).
康艳珍, 郝振芳, 张超星, 等. 化学研究与应用, 2004, 16(6), 761.
106 Zhao H M, Liu X D, Wu K Z. Journal of Hebei Normal University, 2006, 30(2), 188(in Chinese).
赵惠敏, 刘晓地, 武克忠. 河北师范大学学报, 2006, 30(2), 188.
107 Xu R Y. Chemical World, 2001, 12, 619(in Chinese).
徐瑞云. 化学世界, 2001, 12, 619.
108 Wu K Z, Li J L, Wang X D, et al. Journal of University of Science and Technology Beijing, 2007, 29(9), 928(in Chinese).
武克忠, 李建玲, 王新东, 等. 北京科技大学学报, 2007, 29(9), 928.
109 Guo L, Liu H, Dai Y, et al. Journal of Physics & Chemistry of Solids, 2007, 68(9), 1663.
110 Gong H F, Zhang M C. Chinese Journal of Applied Chemistry, 2008, 25(8), 995(in Chinese).
宫惠峰, 张孟存. 应用化学, 2008, 25(8), 995.
111 Lu D F, Di Y Y, Dou J M. Solar Energy Materials and Solar Cells, 2013, 114, 1.
112 Lu D F, Di Y Y, He D H. Renewable Energy, 2013, 50(3), 498.
113 Zhang J, Gao Y Y. Journal of North University of China(Natural Science Edition), 2013, 34(1), 52(in Chinese).
张京, 高艳阳. 中北大学学报(自然科学版), 2013, 34(1), 52.
114 Gao C F, Wang L P, Li Q F, et al. Solar Energy Materials & Solar Cells, 2014, 128, 221.
115 Li Q F, Wang C, Lan X Z. Chinese Chemical Letters, 2017, 28(1), 49.
116 Xiao Z L, Chen H Z, Shi M M, et al. Materials Science and Enginee-ring: B, 2005, 117(3), 313.
117 Zheng Y, Wu G, Deng M, et al. Thin Solid Films, 2006, 514(1-2), 127.
118 Chu K B, Zhou Y H, Song J L, et al. Polyhedron, 2017, 131, 22.
119 Nasr F B, Lefi R, Guermazi H. Journal of Molecular Structure, 2018, 1165, 236.
120 Hajlaoui F, Audebrand N, Roisnel T, et al. Applied Organometallic Chemistry, 2020, 34(2), e5293.
121 Karoui K. Journal of Molecular Structure, 2020, 1203, 127430.
122 Akrout F, Hajlaoui F, Karoui K, et al. Journal of Solid State Chemistry, 2020, 287, 122338.
123 Worley C, Yangui A, Roccanova R, et al. Chemistry-A European Journal, 2019, 25, 9875.
124 Landi E, Vacatello M. Thermochimica Acta, 1975, 13(4), 441.
125 Li W P, Zhang D S, Zhang T P, et al. Thermochimica Acta, 1999, 326(1-2), 183.
126 He D H, Di Y Y, Tan Z C, et al. Solar Energy Materials & Solar Cells, 2011, 95(10), 2897.
127 Ruan D S, Li W P, He L F, et al. Journal of Thermal Analysis, 1995, 45(1-2), 235.
128 Raj C R, Suresh S, Bhavsar R R, et al. Mechanics of Materials, 2019, 135, 88.
129 Li Y J. Study on solid-solid phase change energy storage material-(CnH2n+1NH3)2MX4 and its binary system. Master's Thesis, Hebei Normal University, China, 2003(in Chinese).
李雅娟. 固-固相变储能物质-(CnH2n+1NH3)2MX4及其二元体系的研究. 硕士学位论文, 河北师范大学, 2003.
130 Cui W Z, Wu K Z, Liu X D, et al. Thermochimica Acta, 2011, 521, 80.
131 Li Z, Li B R, Chen H Z, et al. Chemical Industry and Engineering Progress, 2020, 39(12), 5066(in Chinese).
李昭, 李宝让, 陈豪志, 等. 化工进展, 2020, 39(12), 5066.
132 Zhao P P. Study on preparation and performance of composite solid-solid phase change materials. Ph.D. Thesis, University of Science and Technology of China, China, 2016(in Chinese).
赵盼盼. 固-固复合相变材料制备及性能研究. 博士学位论文, 中国科学技术大学, 2016.
133 Gong X F, Yang Q R, Yao E R, et al. Journal of Functional Materials, 2020, 51(1), 1214(in Chinese).
宫薛菲, 杨启容, 姚尔人, 等. 功能材料, 2020, 51(1), 1214.
134 Pielichowska K, Bieda J, Szatkowski P. Renewable Energy, 2016, 91, 456.
135 Chen J L, Duan Y, Wang Z X. Guangdong Chemical Industry, 2020, 47(2), 101(in Chinese).
陈久林, 段洋, 王志雄. 广东化工, 2020, 47(2), 101.
136 Johnson D J, Ervin J S, Hanchak M, et al. Journal of Thermophysics and Heat Transfer, 2015, 29(1), 55.
137 Singh H, Talekar A, Chien W M, et al. Energy, 2015, 1(91), 334.
138 Raj C R, Suresh S, Bhavsar R R, et al. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3023.
139 Liu C. Experimental study of phase change heat storage heat exchange device for waste heat recovery. Master's Thesis,Beijing University of Civil Engineering and Architecture, China, 2020(in Chinese).
刘超. 用于余热回收的相变蓄热换热装置的实验研究. 硕士学位论文, 北京建筑大学, 2020.
140 Venkitaraj K P, Suresh S, Venugopal A. Applied Thermal Engineering, 2018, 5(137), 461.
141 Yan Q Y, Jin L L. Advanced Materials Research,2011,347-353,2801.
142 Guldentops G, Ardito G, Tao M J, et al. Energy and Buildings, 2018, 167, 240.
143 Yang S W, Du X S, Deng S, et al. Chemical Engineering Journal, 2020, 398, 125654.
144 Lai Y H, Wu T, Wei L L, et al. CIESC Jorunal, 2014, 65(S1), 157(in Chinese).
赖艳华, 吴涛, 魏露露, 等. 化工学报, 2014, 65(S1), 157.
145 Praveen B, Suresh S. Engineering Science & Technology An Internatio-nal Journal, 2018, 21(5), 1086.
146 Wolfowitz Paul. American Institute of Aeronautics and Astronautics, USA, 2002.
147 Sen V K, Jaiswal J, Nandi A, et al. Defence Science Journal, 2018, 68(4), 337.
148 Cong L, Yang F, Guo G H, et al. Construction and Building Materials, 2019, 225, 1012.
[1] 王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
[2] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[3] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[4] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[5] 甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
[6] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[7] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[10] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
[11] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[12] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed