Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1505-1511    https://doi.org/10.11896/cldb.18040146
  无机非金属及其复合材料 |
基于CiteSpace的储热技术研究进展与趋势
陈丽萍1, 蔡亮1, 李光华1, 周强2
1 东南大学能源与环境学院,南京 210096
2 国网江苏综合能源服务有限公司,南京 210019
Advances and Prospects in Thermal Energy Storage:a Critical Review Based on CiteSpace
CHEN Liping1, CAI Liang1, LI Guanghua1, ZHOU Qiang2
1 School of Energy and Environment, Southeast University, Nanjing 210096
2 State Grid Jiangsu Integrated Energy Service Co., Ltd., Nanjing 210019
下载:  全 文 ( PDF ) ( 2158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热技术是利用蓄热材料储存热量然后在需要的时候释放,用以调节能源供应与能源需求在时间、空间或强度上的不匹配。该技术在太阳能热发电、工业余热回收、电子器件热管理、建筑节能等领域具有广泛的应用前景。为系统分析储热技术的发展动态,以Web of Science数据库中收录的2007—2017年“Thermal energy storage”为主题的文献为数据源,借助信息可视化软件CiteSpace对所采集的数据进行分析,绘制出储热技术国家、机构和研究人员合作图谱,展示该技术研究力量的分布与科研合作情况;利用软件共现分析得到储热技术的热点科学领域,同时利用关键词共现网络图谱和文献共被引网络图谱分析了储热技术的研究热点、研究前沿及发展趋势,指出新型多尺度复合结构储热材料和混合储热模式是未来研究的重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈丽萍
蔡亮
李光华
周强
关键词:  储热  潜热  CiteSpace  热化学  相变材料    
Abstract: Thermal energy storage, using the heat storage material to keep the energy and release it when required, is the technology utilized for adjusting the instability and time discrepancy between supply and demand of energy. It has wide ranges of applications in various fields, like solar thermal power generation, industrial waste heat recovery, thermal management of electronics, building energy conservation, etc. In order to make a systematical analysis of the developing tendency of this technology, the literatures on subject of “Thermal energy storage” (included in Web of Science, 2007—2017) have been taken as data resource and been analyzed with the visualization software CiteSpace. With the help of the software, a graph of country, institution and researcher cooperation in the technology of thermal energy storage has been made to indicate the distribution of its research power and the cooperating situations of the scientific research. By using the software co-occurrence analysis, the co-occurrence graphs of research fields and keywords have been made to indicate the prevailing fields of the research and its researching hotspots respectively. Meanwhile, by analyzing the co-citation of the literatures and making its network graph, the frontiers and developing tendency of this research have been concluded, which shows that the new multi-scale thermal storage composite materials as well as the hybrid thermal energy storage systems will be the focal points of the future research.
Key words:  thermal energy storage    latent heat    CiteSpace    thermochemistry    phase change material
                    发布日期:  2019-05-08
ZTFLH:  TK02  
基金资助: 国家重点研发计划(2018YFC0705306);国家自然科学基金(6503000103)
通讯作者:  cailiang@seu.edu.   
作者简介:  陈丽萍,2014年6月毕业于新疆大学建筑环境与能源应用工程专业,获得工学学士学位。现为东南大学能源与环境学院博士研究生,在蔡亮教授的指导下进行研究。目前主要研究领域为熔盐储热技术。蔡亮,东南大学教授,博士研究生导师。1995年本科毕业于东南大学热能工程,2002年获得东南大学热能工程博士学位。2009年作为访问学者赴美国佛罗里达大学学习。2000年—2011年担任东南大学能源与环境学院党委副书记兼副院长,现任东南大学学生处副处长兼招生办主任、江苏省制冷学会理事、江苏省制冷空调专业协作与教学研究会委员兼秘书。主要从事燃气热泵的优化运行、多孔介质传热传质、强化传热、熔盐储能等方面的研究工作。近年来,在国内外权威期刊和重要会议上发表论文30余篇。曾获国家技术发明二等奖、江苏省科技进步二等奖、江苏省科技进步三等奖等。
引用本文:    
陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
CHEN Liping, CAI Liang, LI Guanghua, ZHOU Qiang. Advances and Prospects in Thermal Energy Storage:a Critical Review Based on CiteSpace. Materials Reports, 2019, 33(9): 1505-1511.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040146  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1505
1 Dinçer I, Rosen M A. Thermal energy storage (TES) methods, John Wiley & Sons, USA,2010.
2 Pasupathy A, Velraj R, Seeniraj R V. Renewable and Sustainable Energy Reviews,2008,12(1),39.
3 Zalba B, Marín J M, Cabeza L F, et al. Applied Thermal Engineering,2003,23(3),251.
4 Fernandez A I, Martínez M, Segarra M, et al. Solar Energy Materials and Solar Cells,2010,94(10),1723.
5 Khare S, Dell’Amico M, Knight C, et al. Solar Energy Materials and Solar Cells,2013,115,114.
6 Cabeza L F, Galindo E, Prieto C, et al. Renewable Energy,2015,83,820.
7 Cabeza L F, Solé A, Fontanet X, et al. Applied Energy,2017,185,836.
8 Xu B, Li P, Chan C. Applied Energy,2015,160,286.
9 Zhang Hongtao, Zhao Youjing, Zhang Ping, et al. Material Review A:Review Papers,2015(1),54(in Chinese).
张宏韬,赵有璟,张萍,等.材料导报:综述篇,2015(1),54.
10Merlin K, Soto J, Delaunay D, et al. Applied Energy,2016,183,491.
11Sharif M K A, Al-Abidi A A, Mat S, et al. Renewable and Sustainable Energy Reviews,2015,42,557.
12Heier J, Bales C, Martin V. Renewable and Sustainable Energy Reviews,2015,42,1305.
13Zhou D, Zhao C Y, Tian Y. Applied Energy,2012,92,593.
14De Gracia A, Cabeza L F. Energy and Buildings,2015,103,414.
15Sarier N, Onder E. Thermochimica Acta,2012,540,7.
16Kandasamy R, Wang X, Mujumdar A S. Applied Thermal Engineering,2007,27(17),2822.
17Wilhelm E, Richter C, Rapp B E. Sensors and Actuators A: Physical,2018,271,303.
18Chen C. Journal of the American Society for Information Science and Technology,2006,57(3),359.
19Chen C. Proceedings of the National Academy of Sciences,2004,101,5303.
20Chen C, Ibekwe-Sanjuan F, Hou J. Journal of the American Society for Information Science and Technology,2010,61(7),1386.
21Qian G. International Journal of Life Cycle Assessment,2014,19(7),1462.
22Lin Deming, Chen Chaomei, Liu Zeyuan. Journal of the China Society for Scientific and Technical Information,2011,30(1),76(in Chinese).
林德明,陈超美,刘则渊.情报学报,2011,30(1),76.
23Fisch M N, Guigas M, Dalenbäck J O. Solar Energy,1998,63(6),355.
24Schmidt T, Mangold D, Müller-Steinhagen H. Solar Energy,2004,76(1),165.
25Vignarooban K, Xu X, Arvay A, et al. Applied Energy,2015,146,383.
26Su Fu, Ke Ping. Journal of Academic Libraries,2017(1),11(in Chinese).
苏福,柯平.大学图书馆学报,2017(1),11.
27Li G. Renewable and Sustainable Energy Reviews,2016,53,897.
28Kant K, Shukla A, Sharma A. Solar Energy Materials and Solar Cells,2017,172,82.
29Pielichowska K, Pielichowski K. Progress in Materials Science,2014,65,67.
30Derek J D S P. Science,1965,149(3683),510.
31Garfield E. Current Contents,1994,41(10),3.
32Zhao C Y, Zhang G H. Renewable and Sustainable Energy Reviews,2011,15(8),3813.
33Tyagi V V, Kaushik S C, Tyagi S K, et al. Renewable and Sustainable Energy Reviews,2011,15(2),1373.
34Mondal S. Applied Thermal Engineering,2008,28(11),1536.
35Zhang P, Ma Z W, Wang R Z. Renewable and Sustainable Energy Reviews,2010,14(2),598.
36Chen Z, Fang G. Renewable and Sustainable Energy Reviews,2011,15(9),4624.
37Kenisarin M M, Kenisarina K M. Renewable and Sustainable Energy Reviews,2012,16(4),1999.
38Regin A F, Solanki S C, Saini J S. Renewable and Sustainable Energy Reviews,2008,12(9),2438.
39Nath R. Encapsulation of high temperature phase change materials for thermal energy storage. Master’s Thesis, University of South Florida, USA,2012.
40Nomura T, Okinaka N, Akiyama T. ISIJ International,2010,50(9),1229.
41Fallahi A, Guldentops G, Tao M, et al. Applied Thermal Engineering,2017,127,1427.
42Cao Q, Liu P. European Polymer Journal,2006,42(11),2931.
43Chen C, Liu W, Wang Z, et al. Solar Energy Materials and Solar Cells,2015,134,80.
44Sundararajan S, Samui A B, Kulkarni P S. Industrial & Engineering Chemistry Research,2017,56(49),14401.
45Nishioka K, Suura N, Ohno K, et al. ISIJ International,2010,50(9),1240.
46Farid M M, Khudhair A M, Razack S A K, et al. Energy Conversion and Management,2004,45(9),1597.
47Li W, Zhang D, Zhang T, et al. Thermochimica Acta,1999,326(1),183.
48Tokoro H, Yoshikiyo M, Imoto K, et al. Nature Communications,2015,6,7037.
49Bugaje I M. International Journal of Energy Research,1998,21(9),759.
50Zhang L, Zhu J, Zhou W, et al. Thermochimica Acta,2011,524(1),128.
51Kumar A, Kulkarni P S, Samui A B. Cellulose,2014,21(1),685.
52Wang W, Yang X, Fang Y, et al. Applied Energy,2009,86(7),1196.
53Zhang L, Zhu J, Zhou W, et al. Energy,2012,39(1),294.
54Tang B, Wang Y, Qiu M, et al. Solar Energy Materials and Solar Cells,2014,123,7.
55Liu S, Yan Z, Fu L, et al. Solar Energy Materials and Solar Cells,2017,167,140.
56Yan T, Wang R Z, Li T X, et al. Renewable and Sustainable Energy Reviews,2015,43,13.
57Agrafiotis C, Roeb M, Schmücker M, et al. Solar Energy,2014,102,189.
58N Tsoukpoe K E, Liu H, Le Pierrès N, et al. Renewable and Sustainable Energy Reviews,2009,13(9),2385.
59Li T, Wang R, Kiplagat J K, et al. Energy,2013,50,454.
60Aydin D, Casey S P, Riffat S. Renewable and Sustainable Energy Reviews,2015,41,356.
61Pardo P, Deydier A, Anxionnaz-Minvielle Z, et al. Renewable and Sustainable Energy Reviews,2014,32,591.
62Trausel F, de Jong A, Cuypers R. Energy Procedia,2014,48,447.
63Scapino L, Zondag H A, Van Bael J, et al. Applied Energy,2017,190,920.
64Deng S. Encyclopedia of Chemical Processing,2006,5,2825.
65Wilson S T, Lok B M, Messina C A, et al. Journal of the American Chemical Society,1982,104(4),1146.
66Lok B M, Messina C A, Patton R L, et al. Journal of the American Chemical Society,1984,106(20),6092.
67Jänchen J, Ackermann D, Weiler E, et al. Thermochimica Acta,2005,434(1),37.
68Henninger S K, Schmidt F P, Henning H M. Applied Thermal Enginee-ring,2010,30(13),1692.
69Grekova A D, Gordeeva L G, Lu Z, et al. Solar Energy Materials and Solar Cells,2018,176,273.
70Yu N, Wang R Z, Wang L W. Progress in Energy and Combustion Science,2013,39(5),489.
71Frazzica A, Freni A. Renewable Energy,2017,110,87.
72Jacobson M Z, Delucchi M A. Energy Policy,2011,39(3),1154.
73Delucchi M A, Jacobson M Z. Energy Policy,2011,39(3),1170.
74Peterseim J H, White S, Tadros A, et al. Renewable Energy,2013,57,520.
75Müller-Steinhagen H, Trieb F. Ingenia,2004,18(18),43.
76Sheu E J, Mitsos A, Eter A A, et al. Journal of Solar Energy Enginee-ring,2012,134(4),41006.
[1] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[2] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[3] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[4] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[5] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[6] 黄雪, 崔英德, 尹国强, 张步宁, 冯光炷. 癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 52-56.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed