Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 94-99    https://doi.org/10.11896/j.issn.1005-023X.2017.04.021
  材料研究 |
正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*
李云涛, 晏华, 汪宏涛, 王群, 赵思勰
后勤工程学院化学与材料工程系, 重庆 401311
Ternary Eutectic Mixture/Expanded Graphene Composite Phase Change
Material with a Low Eutectic Temperature
LI Yuntao, YAN Hua, WANG Hongtao, WANG Qun, ZHAO Sixie
Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 1790KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将正癸酸(DA)、月桂酸(LA)和硬脂酸(SA)熔融共混制备了三元体系相变材料(DA-LA-SA),以DA-LA-SA为相变材料,膨胀石墨(EG)为载体材料,用熔融共混法制备不同DA-LA-SA含量的三元低共熔脂肪酸/膨胀石墨复合相变材料(DA-LA-SA/EG-PCMs)。采用FT-IR、XRD、SEM、TGA和DSC对其组成成分、晶体结构、微观形貌、相变温度和相变焓进行表征。结果表明,当DA、LA和SA的质量配比为1∶8∶1时,DA-LA-SA具有较低的相变温度和较高的相变焓;EG由大量的微孔构成,通过微孔束缚和表面吸附与DA-LA-SA物理结合,具有良好的稳定性;EG质量分数为10%时,所制备的DA-LA-SA/EG-PCMs三元相变体系复合相变材料的相变温度为38.6 ℃,相变焓为123 J/g,导热系数为3.572 1 W·(m·K)-1,分散均匀,颗粒粒径较小,具有优良的热性能和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李云涛
晏华
汪宏涛
王群
赵思勰
关键词:  三元脂肪酸  膨胀石墨  复合相变材料  热性能  正癸酸-月桂酸-硬脂酸  低共熔    
Abstract: A ternary composite phase change material system (DA-LA-SA) was prepared by blending decanoic acid (DA), lauric acid (LA) and stearic acid (SA). Then a series of fatty acid eutectic mixture/expanded graphite composite phase change materials (DA-LA-SA/EG-PCMs) were prepared with DA-LA-SA as phase change component and expanded graphite (EG) as carrier component, by melt blending method. The composition, crystal structure, microstructure, phase transition temperature and enthalpy of DA-LA-SA/EG-PCMs were characterized by FT-IR, XRD, SEM, TGA and DSC. The results showed that when the mass ratio of DA/LA/SA was 1∶8∶1, DA-LA-SA had low phase transition temperature and high phase change enthalpy. EG was composed of numberous pores, and the DA-LA-SA/EG-PCMs with physical combination of EG and DA-LA-SA had good stability through the microporous bound and surface adsorption of EG. When the content of EG was 10wt%, the phase change temperature, enthalpy and thermal conductivity were 38.6 ℃, 123 J/g, and 3.572 1 W·(m·K)-1,respectively, accompanied with a uniform dispersion and small particle size, as well as excellent thermal performance and stability.
Key words:  ternary fatty acids    expanded graphite    composite phase change materials    thermal properties    decanoic acid-lauric acid-stearic acid    low eutectic temperature
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TK02  
基金资助: *国家自然科学基金(51272283)
通讯作者:  晏华:通讯作者,男,博士,教授,博士研究生导师,研究方向为相变材料、磁流变材料 E-mail:1464938458@qq.com   
作者简介:  李云涛:1989年生,硕士研究生,主要研究方向为相变材料及水泥 E-mail:1026774457@qq.com
引用本文:    
李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.021  或          https://www.mater-rep.com/CN/Y2017/V31/I4/94
1 Chcralathan M,Vclraj R,Rcnganarayanan S.Heat transfer and para-metric studies of an encapsulated phase change material based cool thermal energy storage system[J]. J Zhejiang University Science A:Sci Eng,2006,7(11):1890.
2 Trigui A, Karkri M, Krupa I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape stabilized composite phase change material[J]. Energy Convers Manage,2014,77:592.
3 Ince S, Seki Y, Ezan M A, et al. Thermal properties of myristic acid/graphite nanoplates composite phase change materials[J]. Renew Energy,2015,75:246.
4 Ho C J, Gao J Y. Preparation and thermo-physical properties of nanoparticlein-paraffin emulsion as phase change material[J]. Int J Heat Mass Transfer,2009,36(5):469.
5 Varol Y, Koca A, Oztip H F, et al. Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing techniques[J]. Expert Syst Appl,2010,37(4):2726.
6 Jia Chao, Tang Bingtao, Zhang Shufen, et al. Synthesis of stearic acid/SiO2 hybrid phase change materials by ultrasound assisted[J]. Acta Mater Compos Sin,2012,29(1):85(in Chinese).
贾超, 唐炳涛, 张淑芬, 等. 超声辅助溶胶-凝胶法制备硬脂酸/SiO2定形相变储能材料[J]. 复合材料学报,2012,29(1):85.
7 Huang Xue, Cui Yingde, Yin Guoqiang, et al. Preparation and performance of lauric acid-expanded graphite composite phase change materials[J].CIESC J,2015,66(S1):88(in Chinese).
黄雪, 崔英德, 尹国强, 等. 月桂酸-膨胀石墨复合相变材料的制备及性能[J]. 化工学报,2015,66(S1):88.
8 Zui Jiangguo, Li Weizhong, Wen Lindong, et al. Thermal properties of laurie/itetradecanol binary system for energy storage[J]. Appl Therm Eng,2011,31(29):1353.
9 Leng Guanghui, Lan Zhipeng, Ge Zhiwei. Recent progress in thermal energy storage materials[J]. Energy Storage Sci Technol,2015,4(2):126(in Chinese).
冷光辉, 蓝志鹏, 葛志伟. 储热材料研究进展[J]. 储能科学与技术,2015,4(2):126.
10 Zhong Limin, Yang Mu, Luan Luan, et al. Preparation and properties of paraffin/SiO2 composite phase change materials[J]. Chin J Eng,2015,37(7):938(in Chinese).
钟丽敏, 杨穆, 栾栾, 等. 石蜡/二氧化硅复合相变材料的制备及其性能[J]. 工程科学学报,2015,37(7):938.
11 Zhang Xiurong, Zhu Dongsheng, Gao Jinwei, et al. Study on thermal properties of graphite/paraffin composites as phase change heat storage material[J]. Chin J Mater Res,2010,24(3):335(in Chinese).
张秀荣, 朱冬生, 高进伟, 等. 石墨/石蜡复合相变蓄热材料的热性能研究[J]. 材料研究学报,2010,24(3):335.
12 Zhang Yinping, Su Yuehong, Ge Xinshi. Prediction of melting temperature and the fusion heat of (Quasi) eutectic PCM[J]. J China University of Science and Technology,1995,25(4):475(in Chinese).
张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科技大学学报,1995,25(4):475.
13 Huang Xue. The preparation and thermal properties of fatty acids ternary eutectic mixture composite phase change material[D]. Guangzhou: Guangdong University of Technology,2015(in Chinese).
黄雪. 三元低共熔脂肪酸复合相变材料的制备及热性能研究[D]. 广州:广州工业大学,2015.
14 Zhang Zhengguo, Long Na, Fang Xiaoming. Study on performance of paraffin/expanded graphite composite phase-change material[J]. J Funct Mater,2009,40(8):1314(in Chinese).
张正国, 龙娜, 方晓明. 石蜡/膨胀石墨复合相变储热材料的性能研究[J]. 功能材料,2009,40(8):1314.
15 Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite compo-site as phase change material[J]. Appl Therm Eng,2007,27(8-9):1276.
16 Zhang Hong, Wu Xiaohua, Wang Qianqian, et al. Study on the preparation technology of composite phase change material by using orthogonal tests[J]. J Dalian Polytechnic University,2011,30(3):200(in Chinese).
张鸿, 武晓华, 王倩倩, 等. 正交试验法研究定形复合相变材料的制备工艺[J]. 大连工业大学学报,2011,30(3):200.
17 Ding Qing, Fang Xin, Fan Liwu, et al. Effect of hybrid nanofillers on thermal conductivity composite phase change materials[J]. J Zhejiang University:Eng Sci,2015,49(2):333(in Chinese).
丁晴, 方昕, 范利武, 等. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报:工学版,2015,49(2):333.
[1] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[2] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[3] 田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
[4] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[5] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[6] 马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
[7] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[8] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[9] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[10] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[11] 张文雅, 周健, 李辉, 徐名凤. 轻质玄武岩纤维高延性水泥基复合材料研制及导热性能研究[J]. 材料导报, 2023, 37(20): 22040279-6.
[12] 吕婉毓, 郭乃胜, 褚召阳, 房辰泽. 水性丙烯酸基道路标线涂料的制备与性能研究[J]. 材料导报, 2023, 37(18): 22040043-7.
[13] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[14] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[15] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed