Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070138-11    https://doi.org/10.11896/cldb.23070138
  无机非金属及其复合材料 |
电力电子器件用液冷针翅散热器的研究进展
田小飞1,2,3, 王林山1,2,3,4,5,*, 梁雪冰1,2,3,4,5, 郑逢时1,2,3,4,5, 胡强1,2,3,4,5
1 中国有研科技集团有限公司金属粉体材料产业技术研究院,北京 101407
2 有研增材技术有限公司,北京 101407
3 北京有色金属研究总院,北京 100088
4 有研粉末新材料股份有限公司,北京 101407
5 北京市金属粉末工程技术研究中心,北京 101407
Research Progress of Liquid-Cooled Pin-Fin Heatsinks for Power Electronic Devices
TIAN Xiaofei1,2,3, WNAG Linshan1,2,3,4,5,*, LIANG Xuebing1,2,3,4,5, ZHENG Fengshi1,2,3,4,5, HU Qiang1,2,3,4,5
1 Metal Powder Materials Industrial Technology Research Institute of China GRINM Group Co., Ltd., Beijing 101407, China
2 GRINM Additive Manufacturing Technology Co., Ltd., Beijing 101407, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
4 GRIPM Advanced Materials Co., Ltd., Beijing 101407, China
5 Beijing Engineering Research Center of Metal Powder, Beijing 101407, China
下载:  全 文 ( PDF ) ( 11066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着大功率电力电子器件(如绝缘栅双极型晶体管,IGBT)轻量化、小型化和集成化的发展需求,其功率密度越来越大,导致其热流密度越来越高,亟需高效散热来满足其使用要求。传统空气冷却散热器结构简单、使用方便,但是散热能力较低,难以满足高热流密度的散热需求,目前主要采用液体冷却散热器,其中液冷针翅散热器是最常用的高效散热器。本文介绍了液冷针翅散热器的结构、液体工质、材料和制造等方面的研究进展,重点分析了液冷针翅散热器的流体通道结构、针翅结构对流动和传热性能的影响,并给出了液冷针翅散热器的发展建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田小飞
王林山
梁雪冰
郑逢时
胡强
关键词:  电力电子器件  液冷  散热器  针翅结构  传热性能    
Abstract: With the development of high-power power electronic devices (such as insulated gate bipolar transistors, IGBT) lightweight, miniaturization and integration needs, their power density is increasing, resulting in higher and higher heat flow density, which urgently needs efficient heat dissipation to meet its use requirements. Traditional air-cooled heat sinks are simple in structure and easy to use, but the heat dissipation capacity istoo low to meet the heat dissipation requirements of high heat flow density, so liquid-cooled heatsinks are mainly used at present, among these liquid-cooled pin-fin heatsinks are the most common and efficient heat dissipation facilities. Here introduces the research progress in the structure, liquid working medium, material and manufacturing of liquid-cooled pin-fin heatsinks, focuses on the influence of fluid channel structure, pin-fin structure on the flow and heat transfer performance of liquid-cooled pin-fin heatsinks, and gives suggestions for the development of liquid-cooled pin-fin heatsinks.
Key words:  power electronic devices    liquid-cooled    heatsink    pin-fin structure    heat transfer performance
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TK172  
基金资助: 国家重点研发计划(2021YFB3701902);北京市科委项目(Z221100005822001);金属粉体材料概念验证平台项目
通讯作者:  *王林山,中国有研科技集团有限公司正高级工程师、硕士研究生导师。2000年7月和2003年6月毕业于中南大学粉末冶金研究院分别获工学学士学位和工学硕士学位。主要从事粉末冶金材料与零件、金属粉末高效热管理材料等方面的研究、产品开发和产业化。截至目前,已发表论文40余篇,作为副主编出版“十一五”国家重点图书《铜及铜合金粉末与制品》,制修订国家或行业标准10项,获得省部级奖5项。wls@gripm.com   
作者简介:  田小飞,2021年6月毕业于中南大学,获得工学学士学位。现为北京有色金属研究总院硕士研究生,在王林山教授的指导下进行研究。目前主要研究领域为粉末冶金热管理材料。
引用本文:    
田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
TIAN Xiaofei, WNAG Linshan, LIANG Xuebing, ZHENG Fengshi, HU Qiang. Research Progress of Liquid-Cooled Pin-Fin Heatsinks for Power Electronic Devices. Materials Reports, 2024, 38(21): 23070138-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070138  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070138
1 Wu X L, Li C Y, Yang J L, et al. International Journal of Heat and Mass Transfer, 2023, 205, 123900.
2 Aranzabal I, Martinez de Alegria I, Garate J I, et al. In: 2017 11th IEEE International Conference on Compatibility. Cadiz, Spain, 2017, pp. 501.
3 Bhunia A, Chandrasekaran S, Chen C L. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 309.
4 Valenzuela J, Jasinski T, Sheikh Z. Power Electronics Technology, 2005, 31, 50.
5 Pedersen K B, Pedersen K. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Aalborg, Denmark, 2012, pp. 519.
6 Gekenidis S, Ramezani E, Zeller H. In: 11th International Symposium on Power Semiconductor Devices and ICs. Toronto, Canada, 1999, pp. 129.
7 Ramminger S, Seliger N, Wachutka G. Microelectronics Reliability, 2000, 40, 1521.
8 Smet V, Forest F, Huselstein J J, et al. IEEE Transactions on Industrial Electronics, 2011, 58, 4931.
9 Liu Y. Modeling and simulation of microelectronic devices and packages, Science Press, 2010, 15 (in Chinese).
刘勇.微电子器件及封装的建模与仿真, 科学出版社, 2010, pp. 15.
10 Sohel Murshed S M, Nieto de Castro C A. Renewable and Sustainable Energy Reviews, 2017, 78, 821.
11 Zhang Z H, Wang X H, Yan Y Y. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2021, 1, 100009.
12 Sarvar F, Whalley D C, Low M K. J Electron Packag, 2001, 123, 338.
13 Cormier Y, Dupuis P, Farjam A, et al. International Journal of Heat and Mass Transfer, 2014, 75, 235.
14 Aranzabal I, Martinez de Alegria I,IEEE Transactions on Power Electro-nics, 2018, 34, 4185.
15 Gao W, Zhang J F, Qu Z G, et al. International Journal of Thermal Sciences, 2021, 164, 106902.
16 Sun X Q, Han Z W, Li X M. Applied Thermal Engineering, 2022, 207, 118142.
17 Zhao J, Du M S, Zhang Z, et al. International Journal of Heat and Mass Transfer, 2021, 181, 100009.
18 Blinov A, Vinnikov D, Lehtla T. Scientific Journal of Riga Technical University Power and Electrical Engineering, 2011, 29, 79.
19 Jiang K, Li T, Zhang Y L. Electronic Science and Technology, 2017, 30(2), 68 (in Chinese).
姜坤, 李涛, 张永亮.电子科技, 2017, 30(2), 68.
20 Tullius J F, Tullius T K, Bayazitoglu Y. International Journal of Heat and Mass Transfer, 2012, 55, 3921.
21 Qi W L, Zhao L, Wang W R, et al. Science Technology and Engineering, 2022, 22(11), 4261 (in Chinese).
齐文亮, 赵亮, 王婉人, 等. 科学技术与工程, 2022, 22(11), 4261.
22 Mertens R G, Chow L, Sundaram K B, et al. Journal of Electronic Pac-kaging, 2007, 129, 316.
23 Wen Y K, Kang Y H, Ruan L. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Chengqing, China, 2020, pp. 166.
24 Mohammadi A, Koşar A. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 153.
25 Al-damook A, Alkasmoul F S. Propulsion and Power Research, 2018, 7, 138.
26 Deng D X, Zeng L, Sun W. International Journal of Heat and Mass Transfer, 2021, 175, 121332.
27 Chu H Q, Yu X Y, Jiang H T, et al. International Journal of Heat and Mass Transfer, 2023, 200, 123530.
28 Gunnasegaran P, Mohammed H A, Shuaib N H, et al. International Communications in Heat and Mass Transfer, 2010, 37, 1078.
29 Wang H T, Chen Z H, Gao J G. Applied Thermal Engineering, 2016, 107, 870.
30 Kose H A, Yildizeli A, Cadirci S. Applied Thermal Engineering, 2022, 211, 118368.
31 Wang J, Yu K, Ye M Z, et al. Energy, 2022, 239, 122606.
32 Ye M Z, Du J Q, Wang J, et al. Energy, 2022, 260, 125000.
33 Wang Y B, Zhu K, Cui Z, et al. Applied Thermal Engineering, 2019, 151, 506.
34 Shahsavar A, Shahmohammadi M, Askari I B. International Communications in Heat and Mass Transfer, 2021, 127, 105500.
35 Hua J Y, Li G, Zhao X B, et al. Applied Thermal Engineering, 2016, 107, 768.
36 Zhao H X, Liu Z G, Zhang C W, et al. Experimental Thermal and Fluid Science, 2016, 71, 57.
37 Wan W, Deng D X, Huang Q S, et al. Applied Thermal Engineering, 2017, 114, 436.
38 Yang D W, Jin Z Y, Wang Y, et al. International Journal of Heat and Mass Transfer, 2017, 113, 366.
39 Yang D W, Wang Y, Ding G F, et al. Applied Thermal Engineering, 2017, 112, 1547.
40 Bhandari P, Padalia D, Ranakoti L, et al. Alexandria Engineering Journal, 2023, 69, 457.
41 Ambreen T, Kim M H. International Journal of Heat and Mass Transfer, 2018, 126, 245.
42 Ambreen T, Saleem A, Park C W. Applied Thermal Engineering, 2019, 158, 113781.
43 Ambreen T, Saleem A, Tanveer M, et al. Case Studies in Thermal Engineering, 2022, 31, 101806.
44 Bahiraei M, Heshmatian S, Goodarzi M, et al. Advanced Powder Techno-logy, 2019, 30, 2503.
45 Zeng L, Deng D X, Zhong N B, et al. International Journal of Mechanical Sciences, 2021, 200, 106445.
46 Qin L W, Zhang X Q, Hua J Y, et al. International Communications in Heat and Mass Transfer, 2022, 133, 105918.
47 Xu Y, Li L, Wang J L. International Journal of Heat and Mass Transfer, 2023, 209, 124079.
48 Yan Y F, Zhao T, He Z Q, et al. Chemical Engineering and Processing-Process Intensification, 2021, 160, 108273.
49 Hosseinirad E, Khoshvaght-Aliabadi M, Hormozi F. International Journal of Heat and Mass Transfer, 2019, 143, 118586.
50 Wang D, Hai T. Engineering Analysis with Boundary Elements, 2023, 146, 216.
51 Ji C, Liu Z G, Lv M M. Chemical Engineering and Processing-Process Intensification, 2022, 179, 109058.
52 Babar H, Wu H W, Ali H M, et al. Thermal Science and Engineering Progress, 2023, 37, 101616.
53 Rostami S, Nadooshan A A, Raisi A, et al. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104811.
54 Feng S, Yan Y F, Li H J, et al. Applied Thermal Engineering, 2019, 153, 748.
55 Zhao J, Huang S B, Gong L, et al. Applied Thermal Engineering, 2016, 93, 1347.
56 Yan Y F, Xue Z G, Xu F L, et al. Applied Thermal Engineering, 2022, 202, 117836.
57 Yan Y F, Wang D D, Xu F L, et al. International Journal of Heat and Mass Transfer, 2022, 186, 122518.
58 Karami M, Tashakor S, Afsari A, et al. Thermal Science and Engineering Progress, 2019, 14, 100417.
59 Jia Y T, Xia G D, Li Y F, et al. International Communications in Heat and Mass Transfer, 2018, 92, 78.
60 Chamanroy Z, Khoshvaght-Aliabadi M. International Journal of Thermal Sciences, 2019, 146, 106071.
61 Mohit M K, Gupta R. Case Studies in Thermal Engineering, 2022, 32, 101884.
62 Lee J, Ki S, Seo D, et al. Applied Thermal Engineering, 2020, 173, 115230.
63 Li Y T, Gong L, Xu M H, et al. International Journal of Heat and Mass Transfer, 2020, 151, 119376.
64 Li Y T, Gong L, Xu M H, et al. Applied Thermal Engineering, 2020, 166, 114665.
65 Zhou W N, Dong K J, Sun Q, et al. International Journal of Energy Research, 2022, 46, 11574.
66 Khattak Z, Ali H M. International Journal of Heat and Mass Transfer, 2019, 130, 141.
67 Chen M G. Fluid Measurement & Contro. 2021, 2(5), 39 (in Chinese).
陈名刚. 流体测量与控制, 2021, 2(5), 39.
68 Han F L. Powder Metallurgy Industey, 2011, 21(1), 1 (in Chinese).
韩凤麟.粉末冶金工业, 2011, 21(1), 1.
[1] 傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
[2] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[3] 陈琅, 刘嘉辰, 张佳晨, 王贞福, 王丹, 李特. 半导体激光器低热阻液冷热沉研究现状与展望[J]. 材料导报, 2023, 37(10): 21120232-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed