Research Progress of Liquid-Cooled Pin-Fin Heatsinks for Power Electronic Devices
TIAN Xiaofei1,2,3, WNAG Linshan1,2,3,4,5,*, LIANG Xuebing1,2,3,4,5, ZHENG Fengshi1,2,3,4,5, HU Qiang1,2,3,4,5
1 Metal Powder Materials Industrial Technology Research Institute of China GRINM Group Co., Ltd., Beijing 101407, China 2 GRINM Additive Manufacturing Technology Co., Ltd., Beijing 101407, China 3 General Research Institute for Nonferrous Metals, Beijing 100088, China 4 GRIPM Advanced Materials Co., Ltd., Beijing 101407, China 5 Beijing Engineering Research Center of Metal Powder, Beijing 101407, China
Abstract: With the development of high-power power electronic devices (such as insulated gate bipolar transistors, IGBT) lightweight, miniaturization and integration needs, their power density is increasing, resulting in higher and higher heat flow density, which urgently needs efficient heat dissipation to meet its use requirements. Traditional air-cooled heat sinks are simple in structure and easy to use, but the heat dissipation capacity istoo low to meet the heat dissipation requirements of high heat flow density, so liquid-cooled heatsinks are mainly used at present, among these liquid-cooled pin-fin heatsinks are the most common and efficient heat dissipation facilities. Here introduces the research progress in the structure, liquid working medium, material and manufacturing of liquid-cooled pin-fin heatsinks, focuses on the influence of fluid channel structure, pin-fin structure on the flow and heat transfer performance of liquid-cooled pin-fin heatsinks, and gives suggestions for the development of liquid-cooled pin-fin heatsinks.
1 Wu X L, Li C Y, Yang J L, et al. International Journal of Heat and Mass Transfer, 2023, 205, 123900. 2 Aranzabal I, Martinez de Alegria I, Garate J I, et al. In: 2017 11th IEEE International Conference on Compatibility. Cadiz, Spain, 2017, pp. 501. 3 Bhunia A, Chandrasekaran S, Chen C L. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 309. 4 Valenzuela J, Jasinski T, Sheikh Z. Power Electronics Technology, 2005, 31, 50. 5 Pedersen K B, Pedersen K. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Aalborg, Denmark, 2012, pp. 519. 6 Gekenidis S, Ramezani E, Zeller H. In: 11th International Symposium on Power Semiconductor Devices and ICs. Toronto, Canada, 1999, pp. 129. 7 Ramminger S, Seliger N, Wachutka G. Microelectronics Reliability, 2000, 40, 1521. 8 Smet V, Forest F, Huselstein J J, et al. IEEE Transactions on Industrial Electronics, 2011, 58, 4931. 9 Liu Y. Modeling and simulation of microelectronic devices and packages, Science Press, 2010, 15 (in Chinese). 刘勇.微电子器件及封装的建模与仿真, 科学出版社, 2010, pp. 15. 10 Sohel Murshed S M, Nieto de Castro C A. Renewable and Sustainable Energy Reviews, 2017, 78, 821. 11 Zhang Z H, Wang X H, Yan Y Y. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2021, 1, 100009. 12 Sarvar F, Whalley D C, Low M K. J Electron Packag, 2001, 123, 338. 13 Cormier Y, Dupuis P, Farjam A, et al. International Journal of Heat and Mass Transfer, 2014, 75, 235. 14 Aranzabal I, Martinez de Alegria I,IEEE Transactions on Power Electro-nics, 2018, 34, 4185. 15 Gao W, Zhang J F, Qu Z G, et al. International Journal of Thermal Sciences, 2021, 164, 106902. 16 Sun X Q, Han Z W, Li X M. Applied Thermal Engineering, 2022, 207, 118142. 17 Zhao J, Du M S, Zhang Z, et al. International Journal of Heat and Mass Transfer, 2021, 181, 100009. 18 Blinov A, Vinnikov D, Lehtla T. Scientific Journal of Riga Technical University Power and Electrical Engineering, 2011, 29, 79. 19 Jiang K, Li T, Zhang Y L. Electronic Science and Technology, 2017, 30(2), 68 (in Chinese). 姜坤, 李涛, 张永亮.电子科技, 2017, 30(2), 68. 20 Tullius J F, Tullius T K, Bayazitoglu Y. International Journal of Heat and Mass Transfer, 2012, 55, 3921. 21 Qi W L, Zhao L, Wang W R, et al. Science Technology and Engineering, 2022, 22(11), 4261 (in Chinese). 齐文亮, 赵亮, 王婉人, 等. 科学技术与工程, 2022, 22(11), 4261. 22 Mertens R G, Chow L, Sundaram K B, et al. Journal of Electronic Pac-kaging, 2007, 129, 316. 23 Wen Y K, Kang Y H, Ruan L. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Chengqing, China, 2020, pp. 166. 24 Mohammadi A, Koşar A. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 153. 25 Al-damook A, Alkasmoul F S. Propulsion and Power Research, 2018, 7, 138. 26 Deng D X, Zeng L, Sun W. International Journal of Heat and Mass Transfer, 2021, 175, 121332. 27 Chu H Q, Yu X Y, Jiang H T, et al. International Journal of Heat and Mass Transfer, 2023, 200, 123530. 28 Gunnasegaran P, Mohammed H A, Shuaib N H, et al. International Communications in Heat and Mass Transfer, 2010, 37, 1078. 29 Wang H T, Chen Z H, Gao J G. Applied Thermal Engineering, 2016, 107, 870. 30 Kose H A, Yildizeli A, Cadirci S. Applied Thermal Engineering, 2022, 211, 118368. 31 Wang J, Yu K, Ye M Z, et al. Energy, 2022, 239, 122606. 32 Ye M Z, Du J Q, Wang J, et al. Energy, 2022, 260, 125000. 33 Wang Y B, Zhu K, Cui Z, et al. Applied Thermal Engineering, 2019, 151, 506. 34 Shahsavar A, Shahmohammadi M, Askari I B. International Communications in Heat and Mass Transfer, 2021, 127, 105500. 35 Hua J Y, Li G, Zhao X B, et al. Applied Thermal Engineering, 2016, 107, 768. 36 Zhao H X, Liu Z G, Zhang C W, et al. Experimental Thermal and Fluid Science, 2016, 71, 57. 37 Wan W, Deng D X, Huang Q S, et al. Applied Thermal Engineering, 2017, 114, 436. 38 Yang D W, Jin Z Y, Wang Y, et al. International Journal of Heat and Mass Transfer, 2017, 113, 366. 39 Yang D W, Wang Y, Ding G F, et al. Applied Thermal Engineering, 2017, 112, 1547. 40 Bhandari P, Padalia D, Ranakoti L, et al. Alexandria Engineering Journal, 2023, 69, 457. 41 Ambreen T, Kim M H. International Journal of Heat and Mass Transfer, 2018, 126, 245. 42 Ambreen T, Saleem A, Park C W. Applied Thermal Engineering, 2019, 158, 113781. 43 Ambreen T, Saleem A, Tanveer M, et al. Case Studies in Thermal Engineering, 2022, 31, 101806. 44 Bahiraei M, Heshmatian S, Goodarzi M, et al. Advanced Powder Techno-logy, 2019, 30, 2503. 45 Zeng L, Deng D X, Zhong N B, et al. International Journal of Mechanical Sciences, 2021, 200, 106445. 46 Qin L W, Zhang X Q, Hua J Y, et al. International Communications in Heat and Mass Transfer, 2022, 133, 105918. 47 Xu Y, Li L, Wang J L. International Journal of Heat and Mass Transfer, 2023, 209, 124079. 48 Yan Y F, Zhao T, He Z Q, et al. Chemical Engineering and Processing-Process Intensification, 2021, 160, 108273. 49 Hosseinirad E, Khoshvaght-Aliabadi M, Hormozi F. International Journal of Heat and Mass Transfer, 2019, 143, 118586. 50 Wang D, Hai T. Engineering Analysis with Boundary Elements, 2023, 146, 216. 51 Ji C, Liu Z G, Lv M M. Chemical Engineering and Processing-Process Intensification, 2022, 179, 109058. 52 Babar H, Wu H W, Ali H M, et al. Thermal Science and Engineering Progress, 2023, 37, 101616. 53 Rostami S, Nadooshan A A, Raisi A, et al. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104811. 54 Feng S, Yan Y F, Li H J, et al. Applied Thermal Engineering, 2019, 153, 748. 55 Zhao J, Huang S B, Gong L, et al. Applied Thermal Engineering, 2016, 93, 1347. 56 Yan Y F, Xue Z G, Xu F L, et al. Applied Thermal Engineering, 2022, 202, 117836. 57 Yan Y F, Wang D D, Xu F L, et al. International Journal of Heat and Mass Transfer, 2022, 186, 122518. 58 Karami M, Tashakor S, Afsari A, et al. Thermal Science and Engineering Progress, 2019, 14, 100417. 59 Jia Y T, Xia G D, Li Y F, et al. International Communications in Heat and Mass Transfer, 2018, 92, 78. 60 Chamanroy Z, Khoshvaght-Aliabadi M. International Journal of Thermal Sciences, 2019, 146, 106071. 61 Mohit M K, Gupta R. Case Studies in Thermal Engineering, 2022, 32, 101884. 62 Lee J, Ki S, Seo D, et al. Applied Thermal Engineering, 2020, 173, 115230. 63 Li Y T, Gong L, Xu M H, et al. International Journal of Heat and Mass Transfer, 2020, 151, 119376. 64 Li Y T, Gong L, Xu M H, et al. Applied Thermal Engineering, 2020, 166, 114665. 65 Zhou W N, Dong K J, Sun Q, et al. International Journal of Energy Research, 2022, 46, 11574. 66 Khattak Z, Ali H M. International Journal of Heat and Mass Transfer, 2019, 130, 141. 67 Chen M G. Fluid Measurement & Contro. 2021, 2(5), 39 (in Chinese). 陈名刚. 流体测量与控制, 2021, 2(5), 39. 68 Han F L. Powder Metallurgy Industey, 2011, 21(1), 1 (in Chinese). 韩凤麟.粉末冶金工业, 2011, 21(1), 1.