Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070129-7    https://doi.org/10.11896/cldb.23070129
  金属与金属基复合材料 |
调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响
李迎春1,2,*, 杨更生1, 杨明宣1, 邱明1,2, 范恒华1
1 河南科技大学机电工程学院,河南 洛阳 471000
2 河南科技大学机械装备先进制造河南省协同创新中心,河南 洛阳 471000
Influence of Modulation Periodicity on Tribo-corrosion Properties of Magnetron-sputtered Film Consisting of Multiple Alternating Layers of Cr and Graphite-like Carbon
LI Yingchun1,2,*, YANG Gengsheng1, YANG Mingxuan1, QIU Ming1,2, FAN Henghua1
1 School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
2 Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Henan University of Science and Technology, Luoyang 471000, Henan, China
下载:  全 文 ( PDF ) ( 11160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海洋环境用关键运动部件在使用时承受腐蚀与磨损的交互作用,在其表面涂覆耐腐蚀-磨损防护涂层是提高其服役寿命的有效手段之一。本工作采用直流磁控溅射沉积技术在15-5PH不锈钢试样上制备调制周期为940 nm、375 nm和234 nm的Cr/GLC多层膜(分别标记为S1、S2和S3),并通过微观形貌分析、电化学试验、腐蚀-磨损试验分析了调制周期对Cr/GLC多层膜的结构、电化学性能及耐腐蚀-磨损性能的影响。研究结果表明:随着调制周期的缩短,薄膜柱状生长趋势逐渐减弱,膜层更加致密,同时sp2键相对含量逐渐增大,石墨化程度加剧,力学性能更优。在人工海水介质中,随着调制周期的缩短,薄膜层间界面增多,抑制了裂纹的扩展和腐蚀通道的形成,阻碍了腐蚀介质的渗透,多层膜S3的耐腐蚀性能最优。在腐蚀-磨损过程中,由于载荷和腐蚀介质的共同作用,具有致密结构、适宜调制周期的S2薄膜的磨损率仅为2.50×10-16 m3/(N·m),表现出最优的耐腐蚀-磨损性能。因此,设计合适的调制周期是提高Cr/GLC多层膜耐腐蚀-磨损性能的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李迎春
杨更生
杨明宣
邱明
范恒华
关键词:  磁控溅射  Cr/类石墨碳(GLC)多层膜  调制周期  腐蚀-磨损    
Abstract: Critical moving parts used in marine environment suffer the interactive impact by corrosion and wear, and depositing tribo-corrosion-resistant coatings on these metal components is one of the effective means to improve their service life. This work, using DC magnetron sputtering technique, prepared on surfaces of 15-5PH stainless steel substrates three samples of films, which were consisted of multiple alternating layers of Cr and graphite-like carbon (GLC), and differed in modulation periodicities (940 nm, 375 nm and 234 nm, marked as S1, S2 and S3, respectively). Further, it carried out morphological observation, electrochemical test, and tribo-corrosion test to clarify the effects of modulation periodicity on the films' structures, electrochemical properties, and tribo-corrosion resistances. The experiments found, with the decrease of modulation periodicity, a gradually decreasing tendency of columnar crystal growth, and consequently, gradual increases in film density and sp2 bond content, resulting in intensified graphitization and higher mechanical strength. In artificial seawater, multi-layer films with smaller modulation periodicities had more interlayer interfaces, which facilitated inhibition of crack expansion and corrosion channels formation and hindered the penetration of corrosive medium. And the test indicated the best corrosion resistance acquired by S3 film. In the tribo-corrosion test, due to the interaction of load and corrosive medium, the S2 film with denser structure and suitable modulation periodicity achieved a wear rate of only 2.50×10-16 m3/(N·m), exhibiting optimal tribo-corrosion resistance. It could be concluded that the adjustment of modulation periodicity is of key importance to improving the tribo-corrosion resistance of Cr/GLC multi-layer films.
Key words:  magnetron sputtering    alternating Cr/graphite-like carbon (GLC) multi-layer film    modulation periodicity    tribo-corrosion
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(52275186);河南省外专局引智项目(HNGD2020003)
通讯作者:  *李迎春,河南科技大学机电工程学院副教授,硕士研究生导师。1993年自原洛阳工学院(现河南科技大学)材料工程学院金属材料及热处理专业硕士毕业后到原机械工业部第十设计研究院工作,2001年调入河南科技大学工作至今,主要研究方向为摩擦学及表面工程。参加国家自然科学基金面上项目2项、国家科技部专项2项、河南省杰出人才创新基金项目1项、河南省重点攻关项目1项。以第一作者/参与作者发表论文50余篇,包括Industrial Lubrication and Tribology、Tribology International、Wear、《中国机械工程》《中国表面工程》等,参编专著2部。lyc2004henan.china@126.com   
引用本文:    
李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
LI Yingchun, YANG Gengsheng, YANG Mingxuan, QIU Ming, FAN Henghua. Influence of Modulation Periodicity on Tribo-corrosion Properties of Magnetron-sputtered Film Consisting of Multiple Alternating Layers of Cr and Graphite-like Carbon. Materials Reports, 2024, 38(21): 23070129-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070129  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070129
1 Gao P, He D Q, Zheng S X, et al. Journal of Tribology, 2015, 35(2), 138 (in Chinese).
高溥, 何东青, 郑韶先, 等.摩擦学学报, 2015, 35(2), 138.
2 Cui H Z, Lian X J. The Chinese Journal of Nonferrous Metals, 2023,33(4),1179 (in Chinese).
崔洪芝, 练晓娟. 中国有色金属学报, 2023,33(4),1179.
3 Wang C T. Tribological study of high performance graphite-like carbon films for seawater enviro nment. Master's Thesis, Harbin Normal University, China, 2015 (in Chinese).
王春婷. 海水环境高性能类石墨碳薄膜摩擦学研究. 硕士学位论文, 哈尔滨师范大学, 2015.
4 Xing Y B, Jiang B L, Li H T, et al. Surface Technology, 2017, 46(8), 67 (in Chinese).
邢益彬, 蒋百灵, 李洪涛, 等. 表面技术, 2017, 46(8), 67.
5 Gu S X, Li Y C, Qiu M, et al. Lubrication and Seals, 2021, 46(9), 32 (in Chinese).
谷守旭, 李迎春, 邱明, 等. 润滑与密封, 2021, 46(9), 32.
6 Wang Y J, Li H X, Ji L, et al. Surface and Coatings Technology, 2011, 205(8), 3058.
7 Viana G A, Lacerda R G, Jr F L F, et al. Journal of Non-Crystalline Solids, 2008, 354(19-25), 2135.
8 Li L. Design and preparation of strong graphite-like carbon-based thin film materials and study of abrasion behavior. Ph.D. Thesis, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China, 2018 (in Chinese).
李蕾. 强韧类石墨碳基薄膜材料的设计制备与磨蚀行为研究. 博士学位论文, 中国科学院宁波材料技术与工程研究所, 2018.
9 Shi X R., Shi G Y., Zhang X, et al. China Surface Engineering,2022,35(1),191 (in Chinese).
史相如, 史耘嘉, 张欣, 等. 中国表面工程, 2022, 35(1), 191.
10 Shi W Y, Lu B B., Chen Y, et al. Surface Technology, 2017(8), 109 (in Chinese).
施文彦, 陆斌斌, 陈妍, 等. 表面技术, 2017(8), 109.
11 Wang Y, Wang C W, Yuan Z W, et al. Thermal Processing Technology, 2017, 46(16), 161 (in Chinese).
王瑜, 王春伟, 袁战伟, 等. 热加工工艺, 2017, 46(16), 161.
12 Guo Q Q, Li J P. Electroplating and Finishing, 2015, 37(5), 6 (in Chinese).
郭巧琴, 李建平. 电镀与精饰, 2015, 37(5), 6.
13 Wang J F, Wang Y X, Chen K X, et al. Journal of Tribology, 2015, 32(2), 206 (in Chinese).
王佳凡, 王永欣, 陈克选, 等. 摩擦学学报, 2015, 32(2), 206.
14 Nie A N, Li Y C, Fan H H, et al. China Surface Engineering, 2022, 35(2), 187 (in Chinese).
聂傲男, 李迎春, 范恒华, 等. 中国表面工程, 2022, 35(2), 187.
15 Zhu Z Y, Shi W, Yuan J F, et al. Shanghai Metals, 2013, 35(1), 21 (in Chinese).
朱志勇, 施雯, 苑俊峰, 等. 上海金属, 2013, 35(1), 21.
16 Guan X Y, Lu Z B, Wang L P. Tribology Letters, 2011, 44(3), 315.
17 Bai W Q, Li L L, Wang X L, et al. Surface & Coatings Technology, 2015, 266, 70.
18 Bai W Q, Xie Y J, Li L L, et al. Surface & Coatings Technology, 2017, 320, 235.
19 Peng X Y, Zhou X L,Hua X Z. Chinese Journal of Nonferrous Metals, 2017, 27(5), 988 (in Chinese).
彭新元, 周贤良, 华小珍. 中国有色金属学报, 2017, 27(5), 988.
20 Peng X Y, Zhou X L, Hua X Z, et al. Journal of Iron and Steel Research(International), 2015, 22(7), 607.
21 A K M, Ashami F. Materials Science and Engineering, 2010, 527(4), 1052.
22 Wang Q Z, Zhou F, Ding X D, et al. Tribology International, 2013, 67, 104.
23 Zou Y S, Zhou K, Wu Y F, et al. Vacuum, 2012, 86, 1141.
24 Ma G Z, Yong Q S, Wang H D, et al. Journal of Mechanical Engineering, 2018, 54(15),92 (in Chinese).
马国政, 雍青松, 王海斗, 等. 机械工程学报, 2018, 54(15), 92.
25 Liu S, Gu L, Zhao H C, et al. Journal of Materials Science & Technology, 2016, 32(5), 425.
26 Zhang J Q, Cao C N. Corrosion and Protection, 1998(3), 99 (in Chinese).
张鉴清, 曹楚南. 腐蚀与防护, 1998,19(3), 99.
[1] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[2] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[3] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[4] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[5] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[6] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[7] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[8] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[9] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[10] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[11] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[12] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[13] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[14] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[15] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed