Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2023-2028    https://doi.org/10.11896/cldb.19010037
  无机非金属及其复合材料 |
具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建
吴珊妮, 赵远, 姜宏, 文峰, 熊春荣
海南大学南海海洋资源利用国家重点实验室,海南大学海南省特种玻璃重点实验室,海口 570228
Construction of W/Al2O3 Functional Nano-multilayers with Low Thermal Conductivity and Superior Mechanical Properties
WU Shanni, ZHAO Yuan, JIANG Hong, WEN Feng, XIONG Chunrong
State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Laboratory of Hainan Province,Hainan University,Haikou 570228,China
下载:  全 文 ( PDF ) ( 4605KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究以高纯W与Al2O3为靶材,在常温下采用磁控溅射法在钠钙硅玻璃表面交替镀制了W及Al2O3纳米多层膜。在多层膜总厚度相同的条件下,研究了不同W/Al2O3周期厚度对隔热性能的影响。采用台阶仪、扫描电镜(SEM)、X射线衍射仪(XRD)、场发射透射电镜(TEM)等对多层膜的形貌及结构进行了表征。采用瞬态热反射法(TTR)、纳米压痕仪分别分析了多层膜的隔热性能和力学性能。结果表明,实验沉积的多层膜中各单层均匀连续,不存在断层现象,且层间界面清晰。Al2O3膜层呈非晶形态,W膜层具有亚稳态β-W(210)的择优取向,并在周期厚度为5 nm时呈现明显的非晶态。随着膜层界面密度的增大,多层膜的热阻增大,热导率减小,硬度增大。周期厚度为5 nm、膜层数为41 层的W/Al2O3多层膜具有较为优异的隔热性能与力学性能,其热阻为3.14×10-7 m2·K·W-1,有效热导率为0.36 W·m-1·K-1,硬度为8.53 GPa,膜/基结合力为42.20 mN。所制备的多层膜在室温到500 ℃之间具有良好的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴珊妮
赵远
姜宏
文峰
熊春荣
关键词:  W/Al2O3多层膜  磁控溅射  热导率  周期厚度  瞬态热反射法    
Abstract: This work carried out an alternative deposition of W/Al2O3 nano-multilayers with various periodic thickness on the surface of soda-lime-silica glass by means of magnetron sputtering at room temperature, taking W and Al2O3 as targets. Under the condition of the same total thickness of W/Al2O3nano-multilayers, the effects of various periodic thickness on thermal insulation performance of W/Al2O3 were investigated. Step profiler, scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed to characterize the morphology and structure of W/Al2O3 nano-multilayers. Transient thermoreflectance (TTR) technique and nano indentation instrument were adopted to measure the thermal and mechanical properties of W/Al2O3 nano-multilayers. It was found that the individual layer in the nano-multilayers was uniform and continuous, no fault could be observed and interface between the layers was clear. The deposited Al2O3 layer exhibited an amorphous morphology, and the W layer held a metastable β-W (210) preferred orientation and showed an obvious amorphous state under the periodic thickness of 5 nm. The increase of interface density would bring about the enhancement in thermal resistance and hardness, and the decline in thermal conductivity of W/Al2O3 nano-multilayers. The W/Al2O3 nano-multilayers with 41 layers and periodic thickness of 5 nm exhibited an exceptional thermal insulation and mechanical properties, presenting the thermal resistance of 3.14×10-7m2·K·W-1, effective thermal conductivity of 0.36 W·m-1·K-1, hardness up to 8.53 GPa, binding force between multilayers and substrate of 42.20 mN. The prepared W/Al2O3 nano-multilayers possess a satisfactory thermal stability in the range of room temperature to 500 ℃.
Key words:  W/Al2O3 multilayer films    magnetron sputtering    thermal conductivity    periodic thickness    transient thermoreflectance technique
出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB34  
  TB79  
基金资助: 海南省重大科技计划项目(ZDKJ2017011);国家自然科学基金(51761010)
通讯作者:  bearcr_82@hotmail.com   
作者简介:  吴珊妮,目前为海南大学化学工程专业在读硕士,主要从事功能膜材料研究;熊春荣,海南大学教授。1998年硕士毕业于复旦大学,1998—2002年在中国石化上海石油化工研究院工作。2003—2007年至美国德克萨斯大学读博。2007年在加州大学Merced分校做博士后研究。2008年8月来海南大学工作至今,主要研究方向为功能膜材料、纳米材料、工业催化。
引用本文:    
吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
WU Shanni, ZHAO Yuan, JIANG Hong, WEN Feng, XIONG Chunrong. Construction of W/Al2O3 Functional Nano-multilayers with Low Thermal Conductivity and Superior Mechanical Properties. Materials Reports, 2020, 34(2): 2023-2028.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010037  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2023
1 Shi W, Tan Y, Cao Z X. Materials Review, 2012, 26(S1), 344(in Chinese).施伟, 谭毅, 曹作暄. 材料导报, 2012, 26(专辑19), 344.2 Li D F, Yang W P, et al. Space Craft Environment Engineering, 2013, 30(3), 302(in Chinese).李德富, 杨炜平, 等. 航天器环境工程, 2013, 30(3), 302.3 Wang M, Feng J Z, Jiang Y G, et al. Materials Review, 2016, 30(S2), 461(in Chinese).王苗, 冯军宗, 姜勇刚, 等. 材料导报, 2016, 30(专辑28), 461.4 Gao L M. China Ceramic Industry, 2001, 8(1), 25(in Chinese).高力明. 中国陶瓷工业, 2001, 8(1), 25.5 Zhang S C. Study on preparation and performance of low thermal conductivity nano-SiO2 insulation materials. Master’s Thesis, China Building Materials Academy, China, 2015(in Chinese).张世超. 低导热纳米氧化硅隔热材料的制备及性能研究. 硕士学位论文, 中国建筑材料科学研究总院, 2015.6 Wakili K G, Binder B, Vonbank R. Energy & Buildings, 2003, 35(4), 413.7 Li T. Study on preparation and properties of low thermal conductivity insulation composite. Master’s Thesis, Wuhan University of Technology, China, 2011(in Chinese).李涛. 低热导复合隔热材料的制备研究. 硕士学位论文, 武汉理工大学, 2011.8 Li Q B, Pan Z H. Bulletin of the Chinese Ceramic Society, 2011, 30(5), 1092(in Chinese).李庆彬, 潘志华. 硅酸盐通报, 2011, 30(5), 1092.9 Goodson K E. Science, 2007, 315(5810), 342.10 Costescu R M, Cahill D G, Fabreguette F H, et al. Science, 2004, 303(5660), 989.11 Sechrist Z A, Fabreguette F H, Heintz O, et al. Chemistry of Materials, 2005, 17(13), 3475.12 Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413(6856), 597.13 Zhang X P. The low-temperature crystallization of alumina films and the properties of copper(molybdenum)/alumina nano-multilayers prepared by magnetron sputtering. Ph.D. Thesis, Harbin Institute of Technology, China, 2013(in Chinese).张小朋. 磁控溅射氧化铝薄膜的低温晶化及铜(钼)/氧化铝纳米多层膜的性能研究. 博士学位论文, 哈尔滨工业大学, 2013.14 Martienssen W, Warlimont H. Springer handbook of condensed matter and materials data, Springer, Heidelberg, USA, 2005.15 Fabreguette F H, Wind R A, George S M. Applied Physics Letters, 2006, 88(1), 013116-1.16 García-Valenzuela J A, Rivera R, Morales-Vilches A B, et al. Thin Solid Films, 2016, 619, 289.17 Carradò A, Taha M A, El-Mahallawy N A. Journal of Coatings Technology & Research, 2010, 7(4), 515.18 Musil J, Blažek J, Zeman P, et al. Applied Surface Science, 2010, 257(3), 1058.19 Eklund P, Sridharan M, Sillassen M, et al. Thin Solid Films, 2008, 516(21), 7448.20 Figueiredo N M, Louro C, Galindo R E, et al. Surface & Coatings Technology, 2012, 206(11-12), 2740.21 Zhi C H, Liu B, Ren D, et al. Acta Physica Sinica, 2013,62(15),156801-2(in Chinese).植超虎, 刘波, 任丁, 等. 物理学报, 2013, 62(15), 156801-2.22 Salamon K, Milat O, Radic' N, et al. Journal of Physics D: Applied Phy-sics, 2013, 46, 3.23 Vüllers F T N, Spolenak R. Thin Solid Films, 2015, 577, 26.24 Djerdj I, Tonejc A M, Tonejc A, et al. Vacuum, 2005, 80(1), 151.25 Shen Y G, Mai Y W, Zhang Q C, et al. Journal of Applied Physics, 2000, 87(1), 177.26 Vink T J, Walrave W, Daams J L C, et al. Journal of Applied Physics, 1993, 74(2), 988.27 Liu M X, Hu Y F, Ma F, et al. Acta Metallurgica Sinica, 2008, 44(5), 631(in Chinese).刘明霞, 胡永峰, 马飞, 等. 金属学报, 2008, 44(5), 631.28 O’Keefe M J, Grant J T, Solomon J S. Journal of Electronic Materials, 1995, 24(8), 966.29 Fullerton E E, Pearson J, Sowers C H, et al. Physical Review B Condensed Matter, 1993, 48(23), 17432.30 Salditt T, Lott D, Metzger T H, et al. Physical Review B,1996, 54(8), 5860.31 Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590), 2229.32 Chowdhury I, Prasher R, Lofgreen K, et al. Nature Nanotechnology, 2009, 4(4), 235.33 Wang Y, Huang H, Ruan X. Physical Review B, 2014, 90(16), 165406-1.34 Huang Z X. Study of thermal conductivity of thin films by experimental measurement and molecular dynamics simulation. Ph.D. Thesis, Dalian University of Technology, China, 2007(in Chinese).黄正兴. 薄膜热导率的测试与分子动力学模拟研究. 博士学位论文, 大连理工大学, 2007.35 Chen G, Hui P. Thin Solid Films, 1999, 339(1-2), 58.36 Man K F, Tang K S, Kwong S. IEEE Transactions on Industrial Electro-nics, 1996, 43(5), 519.37 Li Q, Wei J, Sun H, et al. Scientific Reports, 2017, 7(1), 1.38 Bai S, Tang Z, Huang Z, et al. IEEE Transactions on Industrial Electronics, 2009, 56(8), 3238.39 Stehfest H. Communications of the ACM, 1970, 13(1), 47.40 Han M, Yuan P, Liu J, et al. Scientific Reports, 2017, 7(1), 12213.41 Lee S M, Cahill D G, Allen T H. Physical Review B Condensed Matter, 1995, 52(1), 253.42 Schlichting K W, Padture N P, Klemens P G. Journal of Materials Scie-nce, 2001, 36(12), 3003.43 Hua M Q, Yuan Z H. Analysis and Testing Technology and Instruments, 2002, 8(4), 218(in Chinese).华敏奇, 袁振海. 分析测试技术与仪器, 2002, 8(4), 218.44 Petroff P, Sheng T T, Sinha A K, et al. Journal of Applied Physics, 1973, 44(6), 2545.45 Wagner R S, Sinha A K, Sheng T T, et al. Journal of Vacuum Science and Technology, 1974, 11(3), 582.46 Petroff P M, Reed W A. Thin Solid Films, 1974, 21(1), 73.47 O'Keefe M J, Horiuchi S, Rigsbee J M, et al. Thin Solid Films, 1994, 247(2), 169.48 Murray R. Journal of Applied Physics, 1985, 58(9), 3583.
[1] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[4] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[5] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[6] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[7] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[8] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[9] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[10] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[11] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[12] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[13] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[14] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[15] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed