Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22040242-6    https://doi.org/10.11896/cldb.22040242
  无机非金属及其复合材料 |
稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展
刘电超, 金国*, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺
哈尔滨工程大学材料科学与化学工程学院,超轻材料与表面技术教育部重点实验室,哈尔滨 150001
Research Progress on the Effects of Rare Earth Oxides Doping on Thermophysical Properties of YSZ Thermal Barrier Coatings
LIU Dianchao, JIN Guo*, JING Yongzhi, CUI Xiufang, FANG Yongchao, CHEN Zhuo, WANG Xinhe
Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Enginee-ring University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 12007KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空发动机和燃气轮机(简称“两机”)服役温度的升高,目前,在两机热端部件表面防护方面应用最为广泛的热障涂层(Thermal barrier coatings,TBCs)存在陶瓷层材料氧化钇稳定氧化锆(Yttria-stabilized zirconia,YSZ)在高温下会发生相转变、热膨胀系数与金属基底不匹配以及烧结导致涂层的热导率升高等问题,严重影响TBCs的服役寿命。新一代TBCs陶瓷面层材料分为以下几类:(1)稀土氧化物稳定YSZ;(2)钙钛矿结构陶瓷材料;(3)稀土六铝酸盐或稀土钽酸盐;(4)烧绿石或萤石结构稀土锆酸盐。其中,稀土氧化物掺杂可有效降低YSZ热障涂层的热导率,提高其热膨胀系数、高温相稳定性及耐烧结性能,被认为是提高YSZ热障涂层高温稳定性的有效方法。基于此,本文重点阐述了单元或多元稀土氧化物掺杂YSZ热障涂层材料的研究进展,讨论了稀土氧化物掺杂对YSZ陶瓷面层高温相稳定性、热导率和热膨胀系数的影响机理。基于耦合作用机理为未来稀土氧化物掺杂YSZ热障涂层的研发提供一定的借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘电超
金国
井勇智
崔秀芳
房永超
陈卓
王薪贺
关键词:  热障涂层  掺杂机理  热导率  热膨胀系数  相转变行为    
Abstract: With the increase in the service temperature of aero engines and gas turbines, thermal barrier coatings (TBCs) are most widely used in the surface protection of hot section components of two engines. There are some problems with yttria stabilized zirconia (YSZ) of ceramic layer material such as phase transformation at elevated temperature, mismatch between the thermal expansion coefficient and metal substrates, and increase in the thermal conductivity of coatings caused by sintering, which seriously affects the service life of TBCs. The new generation of TBCs materials are divided into the following categories:(i) rare earth oxides to stabilize YSZ; (ii) ceramic materials of perovskite structure; (iii) rare-earth hexaaluminates or rare-earth tantalates; (iv) pyrochlore or fluorite structured rare earth zirconates. Among them, rare earth oxides doping can effectively reduce the thermal conductivity of YSZ thermal barrier coatings and improve their thermal expansion coefficient, high temperature phase stability and sintering resistance, which is an effective method to improve the high temperature stability of YSZ thermal barrier coatings. Therefore, the main purpose of this paper is to focus on the research progress of unit or multi-element rare earth oxides doped YSZ thermal barrier coatings, the mechanism of the effect of rare earth oxides doping on the properties of high temperature phase stability, thermal conductivity and thermal expansion coefficient of YSZ top coatings is discussed. The coupling-based mechanism provides some implications for the future development of rare earth oxides doped YSZ thermal barrier coatings.
Key words:  thermal barrier coating    doping mechanism    thermal conductivity    thermal expansion coefficient    phase transition behavior
发布日期:  2023-12-19
ZTFLH:  TG148  
基金资助: 国家自然科学基金(52175163)
通讯作者:  *金国,博士,哈尔滨工程大学材料科学与化学工程学院教授、博士研究生导师,龙江学者特聘教授。目前的主要研究方向为表面工程、再制造、摩擦学等。作为项目负责人先后承担完成各类基金项目40余项,在国内外著名刊物发表论文100余篇。jinjg721@163.com   
作者简介:  刘电超,现为哈尔滨工程大学材料科学与化学工程学院硕士研究生,在金国教授和崔秀芳教授的指导下进行研究。目前主要研究领域为表面工程。
引用本文:    
刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
LIU Dianchao, JIN Guo, JING Yongzhi, CUI Xiufang, FANG Yongchao, CHEN Zhuo, WANG Xinhe. Research Progress on the Effects of Rare Earth Oxides Doping on Thermophysical Properties of YSZ Thermal Barrier Coatings. Materials Reports, 2023, 37(24): 22040242-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040242  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22040242
1 Wang B, Liu Y, Wang F D, et al. Aeroengine, 2021, 47(s1), 25(in Chinese).
王博, 刘洋, 王福德, 等. 航空发动机, 2021, 47(s1), 25.
2 Li Z Q, Niu X Y. Journal of Engineering for Thermal Energy and Power, 2021, 36(8), 22(in Chinese).
李宗全, 牛夕莹. 热能动力工程, 2021, 36(8), 22.
3 Li W. Laser cladding of gradient lanthanum zirconate (La2Zr2O7) thermal barrier coating on GH4169 nickel base superalloy. Master’s Thesis, Huazhong University of Science and Technology, China, 2021(in Chinese).
李伟. GH4169镍基高温合金表面激光熔覆结构梯度锆酸镧(La2Zr2O7)热障涂层的研究. 硕士学位论文, 华中科技大学, 2021.
4 Cai H N. Materials, DOI:10. 3390/ma15010275.
5 Clarke D R, Oechsner M, Padture N P, et al. Materials Research Society, 2012, 37(10), 891.
6 Chen D, Wang Q S, Liu Y B, et al. Journal of Alloys and Compounds, 2019, 806, 580.
7 Wang L, Wang H D, Di Y L, et al. Materials Reports, 2021, 35(17), 17143(in Chinese).
王力, 王海斗, 底月兰, 等. 材料导报, 2021, 35(17), 17143.
8 Mahade S, Curry N, Jonnalagadda K P, et al. Surface & Coatings Technology, 2019, 357, 456.
9 Zhao P S, Cao X P, Zheng H Z, et al. Journal of Aeronautical Materials, 2021, 41(4), 83 (in Chinese).
赵鹏森, 曹新鹏, 郑海忠, 等. 航空材料学报, 2021, 41(4), 83.
10 Ren X R, Pan W. Acta Materialia, 2014, 69, 397.
11 Krogstad J A, Leckie R M, Kramer S, et al. Journal of the American Ceramic Society, 2013, 96(1), 299.
12 Yu C Q, Yu Y R, Zhao Y M, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(5), 1620(in Chinese).
于长清, 余悠然, 赵英民, 等. 硅酸盐通报, 2020, 39(5), 1620.
13 Huang Q L, Yuan W H. Advanced Ceramics, 2015, 36(2), 20 (in Chinese).
黄巧玲, 袁武华. 现代技术陶瓷, 2015, 36(2), 20.
14 Bai M Y, Wang X, Zhen Z, et al. Vacuum, 2021, 58(4), 12(in Chinese).
白明远, 王鑫, 甄真, 等. 真空, 2021, 58(4), 12.
15 Zhang Y, Guo L, Zhao X X, et al. Materials Science & Engineering A, 2015, 648, 385.
16 Xin N, Qiao J, Xie M, et al. Chinese Rare Earths, 2016, 37(6), 128 (in Chinese).
辛娜, 乔璟, 谢敏, 等. 稀土, 2016, 37(6), 128.
17 Fang H J, Wang W Z, Yang Z N, et al. Surface & Coatings Technology, 2021, 427, 127864.
18 Fan W, Wang Z Z, Bai Y, et al. Journal of the European Ceramic Society, 2018, 38(13), 4502.
19 Guo L, Guo H B, Gong S K, et al. Ceramics International, 2013, 39(8), 9009.
20 Song D, Song T, Paik U, et al. Surface & Coatings Technology, 2020, 400, 126197.
21 Bahamirian M, Hadavi S M M, Farvizi M, et al. Ceramics International, 2019, 45(6), 7344.
22 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2020, 47(5), 6875.
23 Jiang K, Liu S B, Wang X. Journal of the European Ceramic Society, 2018, 38(11), 3986.
24 Chen D, Wang Q S, Liu Y B, et al. Surface & Coatings Technology, DOI:10. 1016/j. surfcoat. 2020. 126387.
25 Wang J, Zhang Y X, Chong X Y, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(12), 3758(in Chinese).
汪俊, 张宇轩, 种晓宇, 等. 中国有色金属学报, 2022, 32(12), 3758.
26 Nicholls J R, Lawson K J, Johnstone A, et al. Surface & Coatings Technology, 2002, 151(1), 383.
27 Sang W W, Zhang H S, Chen H H, et al. Journal of Inorganic Materials, 2021, 36(4), 405 (in Chinese).
桑玮玮, 张红松, 陈华辉, 等. 无机材料学报, 2021, 36(4), 405.
28 Liu Y, Cai H N, Wei Z Y, et al. Materials Protection, 2021, 54(11), 1(in Chinese).
刘阳, 蔡洪能, 魏志远, 等. 材料保护, 2021, 54(11), 1.
29 Wang J S, Sun J B, Jing Q S, et al. Journal of the European Ceramic Society, 2018, 38(7), 2841.
30 Wang Z Z, Bai Y, Fan W, et al. Computational Materials Science, DOI:10. 1016/j. commatsci. 2019. 109478.
31 Fang H J, Wang W Z, Deng S J, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111418.
32 Nagaraju N, Annamalai A R. Materials Research Express, DOI:10. 1088/2053-1591/ab1603.
33 Guo L, Li M Z, Ye F X. Ceramics International, 2016, 42(6), 7360.
34 Yang T, Ma W, Meng X F, et al. Journal of Thermal Spray Technology, 2020, 29(1-2), 115.
35 Wang J S, Chen M D, Xu Y Y, et al. Ceramics International, 2021, 47(23), 32874.
36 Li F, Zhou L, Liu J X, et al. Journal of Advanced Ceramics, 2019, 8(4), 576.
37 Jeon H, Lee I, Oh Y. Ceramics International, 2022, 48(6), 8177.
38 Xu C H, Chang X H, Huo K L, et al. Ceramics International, 2022, 48(6), 8572.
39 Wang J S, Chen L Y, Wang M F, et al. Journal of the European Ceramic Society, 2021, 41(2), 1654.
40 Di Girolamo G, Blasi C, Schioppa M, et al. Ceramics International, 2010, 36(3), 961.
41 Gao P H, Zeng S C, Jin C, et al. Materials, DOI:10. 3390/ma14237470.
42 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2021, 47(5), 6875.
43 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 1(in Chinese).
赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 1.
44 Liu Z G, Ouyang J H, Zhou Y. Journal of Alloys & Compounds, 2009, 473(1-2), L17.
45 Zhang Y L, Guo L, Yang Y P, et al. Chinese Journal of Aeronautics, 2012, 25(6), 948.
[1] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[2] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[5] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[6] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[7] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[8] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[9] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[10] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[11] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[12] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[13] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[14] 王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
[15] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed