Research Progress on the Effects of Rare Earth Oxides Doping on Thermophysical Properties of YSZ Thermal Barrier Coatings
LIU Dianchao, JIN Guo*, JING Yongzhi, CUI Xiufang, FANG Yongchao, CHEN Zhuo, WANG Xinhe
Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Enginee-ring University, Harbin 150001, China
Abstract: With the increase in the service temperature of aero engines and gas turbines, thermal barrier coatings (TBCs) are most widely used in the surface protection of hot section components of two engines. There are some problems with yttria stabilized zirconia (YSZ) of ceramic layer material such as phase transformation at elevated temperature, mismatch between the thermal expansion coefficient and metal substrates, and increase in the thermal conductivity of coatings caused by sintering, which seriously affects the service life of TBCs. The new generation of TBCs materials are divided into the following categories:(i) rare earth oxides to stabilize YSZ; (ii) ceramic materials of perovskite structure; (iii) rare-earth hexaaluminates or rare-earth tantalates; (iv) pyrochlore or fluorite structured rare earth zirconates. Among them, rare earth oxides doping can effectively reduce the thermal conductivity of YSZ thermal barrier coatings and improve their thermal expansion coefficient, high temperature phase stability and sintering resistance, which is an effective method to improve the high temperature stability of YSZ thermal barrier coatings. Therefore, the main purpose of this paper is to focus on the research progress of unit or multi-element rare earth oxides doped YSZ thermal barrier coatings, the mechanism of the effect of rare earth oxides doping on the properties of high temperature phase stability, thermal conductivity and thermal expansion coefficient of YSZ top coatings is discussed. The coupling-based mechanism provides some implications for the future development of rare earth oxides doped YSZ thermal barrier coatings.
刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
LIU Dianchao, JIN Guo, JING Yongzhi, CUI Xiufang, FANG Yongchao, CHEN Zhuo, WANG Xinhe. Research Progress on the Effects of Rare Earth Oxides Doping on Thermophysical Properties of YSZ Thermal Barrier Coatings. Materials Reports, 2023, 37(24): 22040242-6.
1 Wang B, Liu Y, Wang F D, et al. Aeroengine, 2021, 47(s1), 25(in Chinese). 王博, 刘洋, 王福德, 等. 航空发动机, 2021, 47(s1), 25. 2 Li Z Q, Niu X Y. Journal of Engineering for Thermal Energy and Power, 2021, 36(8), 22(in Chinese). 李宗全, 牛夕莹. 热能动力工程, 2021, 36(8), 22. 3 Li W. Laser cladding of gradient lanthanum zirconate (La2Zr2O7) thermal barrier coating on GH4169 nickel base superalloy. Master’s Thesis, Huazhong University of Science and Technology, China, 2021(in Chinese). 李伟. GH4169镍基高温合金表面激光熔覆结构梯度锆酸镧(La2Zr2O7)热障涂层的研究. 硕士学位论文, 华中科技大学, 2021. 4 Cai H N. Materials, DOI:10. 3390/ma15010275. 5 Clarke D R, Oechsner M, Padture N P, et al. Materials Research Society, 2012, 37(10), 891. 6 Chen D, Wang Q S, Liu Y B, et al. Journal of Alloys and Compounds, 2019, 806, 580. 7 Wang L, Wang H D, Di Y L, et al. Materials Reports, 2021, 35(17), 17143(in Chinese). 王力, 王海斗, 底月兰, 等. 材料导报, 2021, 35(17), 17143. 8 Mahade S, Curry N, Jonnalagadda K P, et al. Surface & Coatings Technology, 2019, 357, 456. 9 Zhao P S, Cao X P, Zheng H Z, et al. Journal of Aeronautical Materials, 2021, 41(4), 83 (in Chinese). 赵鹏森, 曹新鹏, 郑海忠, 等. 航空材料学报, 2021, 41(4), 83. 10 Ren X R, Pan W. Acta Materialia, 2014, 69, 397. 11 Krogstad J A, Leckie R M, Kramer S, et al. Journal of the American Ceramic Society, 2013, 96(1), 299. 12 Yu C Q, Yu Y R, Zhao Y M, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(5), 1620(in Chinese). 于长清, 余悠然, 赵英民, 等. 硅酸盐通报, 2020, 39(5), 1620. 13 Huang Q L, Yuan W H. Advanced Ceramics, 2015, 36(2), 20 (in Chinese). 黄巧玲, 袁武华. 现代技术陶瓷, 2015, 36(2), 20. 14 Bai M Y, Wang X, Zhen Z, et al. Vacuum, 2021, 58(4), 12(in Chinese). 白明远, 王鑫, 甄真, 等. 真空, 2021, 58(4), 12. 15 Zhang Y, Guo L, Zhao X X, et al. Materials Science & Engineering A, 2015, 648, 385. 16 Xin N, Qiao J, Xie M, et al. Chinese Rare Earths, 2016, 37(6), 128 (in Chinese). 辛娜, 乔璟, 谢敏, 等. 稀土, 2016, 37(6), 128. 17 Fang H J, Wang W Z, Yang Z N, et al. Surface & Coatings Technology, 2021, 427, 127864. 18 Fan W, Wang Z Z, Bai Y, et al. Journal of the European Ceramic Society, 2018, 38(13), 4502. 19 Guo L, Guo H B, Gong S K, et al. Ceramics International, 2013, 39(8), 9009. 20 Song D, Song T, Paik U, et al. Surface & Coatings Technology, 2020, 400, 126197. 21 Bahamirian M, Hadavi S M M, Farvizi M, et al. Ceramics International, 2019, 45(6), 7344. 22 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2020, 47(5), 6875. 23 Jiang K, Liu S B, Wang X. Journal of the European Ceramic Society, 2018, 38(11), 3986. 24 Chen D, Wang Q S, Liu Y B, et al. Surface & Coatings Technology, DOI:10. 1016/j. surfcoat. 2020. 126387. 25 Wang J, Zhang Y X, Chong X Y, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(12), 3758(in Chinese). 汪俊, 张宇轩, 种晓宇, 等. 中国有色金属学报, 2022, 32(12), 3758. 26 Nicholls J R, Lawson K J, Johnstone A, et al. Surface & Coatings Technology, 2002, 151(1), 383. 27 Sang W W, Zhang H S, Chen H H, et al. Journal of Inorganic Materials, 2021, 36(4), 405 (in Chinese). 桑玮玮, 张红松, 陈华辉, 等. 无机材料学报, 2021, 36(4), 405. 28 Liu Y, Cai H N, Wei Z Y, et al. Materials Protection, 2021, 54(11), 1(in Chinese). 刘阳, 蔡洪能, 魏志远, 等. 材料保护, 2021, 54(11), 1. 29 Wang J S, Sun J B, Jing Q S, et al. Journal of the European Ceramic Society, 2018, 38(7), 2841. 30 Wang Z Z, Bai Y, Fan W, et al. Computational Materials Science, DOI:10. 1016/j. commatsci. 2019. 109478. 31 Fang H J, Wang W Z, Deng S J, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111418. 32 Nagaraju N, Annamalai A R. Materials Research Express, DOI:10. 1088/2053-1591/ab1603. 33 Guo L, Li M Z, Ye F X. Ceramics International, 2016, 42(6), 7360. 34 Yang T, Ma W, Meng X F, et al. Journal of Thermal Spray Technology, 2020, 29(1-2), 115. 35 Wang J S, Chen M D, Xu Y Y, et al. Ceramics International, 2021, 47(23), 32874. 36 Li F, Zhou L, Liu J X, et al. Journal of Advanced Ceramics, 2019, 8(4), 576. 37 Jeon H, Lee I, Oh Y. Ceramics International, 2022, 48(6), 8177. 38 Xu C H, Chang X H, Huo K L, et al. Ceramics International, 2022, 48(6), 8572. 39 Wang J S, Chen L Y, Wang M F, et al. Journal of the European Ceramic Society, 2021, 41(2), 1654. 40 Di Girolamo G, Blasi C, Schioppa M, et al. Ceramics International, 2010, 36(3), 961. 41 Gao P H, Zeng S C, Jin C, et al. Materials, DOI:10. 3390/ma14237470. 42 Wei X D, Hou G L, An Y L, et al. Ceramics International, 2021, 47(5), 6875. 43 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 1(in Chinese). 赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 1. 44 Liu Z G, Ouyang J H, Zhou Y. Journal of Alloys & Compounds, 2009, 473(1-2), L17. 45 Zhang Y L, Guo L, Yang Y P, et al. Chinese Journal of Aeronautics, 2012, 25(6), 948.