Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22040273-7    https://doi.org/10.11896/cldb.22040273
  无机非金属及其复合材料 |
可充镁电池负极与电解液相容性的研究进展
童乐1,2, 王敬丰1,2,*, 王金星1,2, 瞿佰华1,2, 黄光胜1,2, 潘复生1,2
1 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
2 重庆大学材料科学与工程学院,重庆 400044
Research Progress on Compatibility Between Anode and Electrolyte of Rechargeable Magnesium Batteries
TONG Le1,2, WANG Jingfeng1,2,*, WANG Jinxing1,2, QU Baihua1,2, HUANG Guangsheng1,2, PAN Fusheng1,2
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 11803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属镁具有较高的理论体积比容量( 3 833 mAh·cm-3)和较低的还原电位(-2.37 V vs.SHE),其作为镁电池负极具有能量密度高、安全性好且成本较低等优点。因此,可充镁电池是极具发展前景的新型二次电池体系。然而,可充镁电池的金属镁负极在充放电过程中易与电解液发生反应,形成阻碍Mg2+可逆沉积/溶解的致密钝化膜,导致较大的极化与较低的库伦效率;此外,镁负极与常规电解液的反应也会限制一些高性能正极材料的应用。本文围绕可充镁电池负极与电解液之间的相容性问题,总结了可充镁电池中负极材料及其界面调控方法等方面的研究进展,介绍了合金化负极材料与纳米/插层负极材料对改善可充镁电池循环性能的重要作用,并重点介绍了人工电解质界面膜和固态电解质对解决金属镁负极与电解液相容性问题的作用。此外,本文还从减少电解液副反应和调控钝化膜的角度,对提升可充镁电池负极与电解液相容性的研究重点与目标进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童乐
王敬丰
王金星
瞿佰华
黄光胜
潘复生
关键词:  镁电池  负极  电解液  相容性    
Abstract: Magnesium metal anode has high theoretical volume specific capacity (3 833 mAh·cm-3) and low reduction potential (-2.37 V vs.SHE).As an anode, magnesium has the advantages of high energy density, good safety and low cost.Therefore, rechargeable magnesium batteries (RMBs) are expected to be the new secondary battery system with great development prospects.However, the magnesium anode of RMBs is prone to react with the electrolyte during the charge/discharge process, forming a dense passivation film that hinders the reversible deposition/dissolution of Mg2+, resulting in large polarization and low coulombic efficiency.In addition, the reaction between magnesium anode and common electrolyte may limit the application of some high-performance cathode materials.Hence, in the light of research situation in the compatibility between anode materials and electrolytes, this review summarizes the research progress on anode materials and interface regulation met-hods in RMBs.Besides, the important roles of alloying anode and nano/intercalated anode materials in improving the cycling performance of RMBs are introduced.The performance of artificial electrolyte interphase and solid-state electrolyte to solve the compatibility problem between anode and electrolytes is emphasized.Furthermore, from the perspective of reducing electrolyte side reaction and regulating passivation film, the key research direction and target of improving the compatibility between anode and electrolytes of RMBs are summarized and prospected.
Key words:  magnesium battery    anode    electrolyte    compatibility
发布日期:  2023-12-19
ZTFLH:  O646  
基金资助: 中央高校基本科研业务费(2021CDJXDJH003)
通讯作者:  *王敬丰,重庆大学材料科学与工程学院教授、博士研究生导师。1993年于武汉大学物理系本科毕业,2004年于华中科技大学材料学院硕博连读毕业后到重庆大学工作至今。目前主要从事新型结构功能一体化镁合金及其制备成形技术、新型镁电池、镁合金塑性成形与组织性能调控等方面的研究工作。发表SCI论文150余篇,授权国家发明专利40余件。jfwang@cqu.edu.cn   
作者简介:  童乐,2021年6月于武汉理工大学获得工学学士学位。现为重庆大学材料科学与工程学院硕士研究生,在王敬丰教授的指导下进行研究。目前主要研究领域为新型镁电池。
引用本文:    
童乐, 王敬丰, 王金星, 瞿佰华, 黄光胜, 潘复生. 可充镁电池负极与电解液相容性的研究进展[J]. 材料导报, 2023, 37(24): 22040273-7.
TONG Le, WANG Jingfeng, WANG Jinxing, QU Baihua, HUANG Guangsheng, PAN Fusheng. Research Progress on Compatibility Between Anode and Electrolyte of Rechargeable Magnesium Batteries. Materials Reports, 2023, 37(24): 22040273-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040273  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22040273
1 Chen H S, Liu C, Xu Y J, et al. Energy Storage Science and Technology, 2021, 10(5), 1477 (in Chinese).
陈海生, 刘畅, 徐玉杰, 等. 储能科学与技术, 2021, 10(5), 1477.
2 Zhu S, Peng Y T, Min Y L, et al. Chemical Industry and Engineering Progress, 2021, 40(9), 4837 (in Chinese).
朱晟, 彭怡婷, 闵宇霖, 等. 化工进展, 2021, 40(9), 4837.
3 Wang T Y, Su D W, Shanmukaraj D, et al. Electrochemical Energy Reviews, 2018, 1(2), 200.
4 Zheng M, Douglas R M, Ka M. Advanced Energy Materials, 2019, 2(2), 115.
5 Lang J H, Jiang C L, Fang Y, et al. Advanced Energy Materials, 2019, 9(29), 1901099.
6 Xu C X, Zhang Y, Zhang N Q, et al. Chemistry-An Asian Journal, 2020, 15(20), 3696.
7 Li Q F, Bjerrum N J. Journal of Power Sources, 2002, 110(1), 1.
8 Li R N, Li Y Q, Zhang R P, et al. Electrochimica Acta, 2021, 369, 137685.
9 Lu Z, Schechter A, Moshkovich M, et al. Journal of Electroanalytical Chemistry, 1999, 466, 203.
10 Attias R, Salama M, Hirsch B, et al. Joule, 2019, 3(1), 27.
11 Wang Y, Sahadeo E, Rubloff G, et al. Journal of Materials Science, 2019, 54, 3671.
12 Chen L, Chen C G, Guo C Z. Chinese Science Bulletin, 2014, 59(17), 1936.
13 Yang R, Yao W J, Tang B, et al. Energy Storage Materials, 2021, 42, 687.
14 Yang Y, Xiong X M, Chen J, et al. Journal of Magnesium and Alloys, 2021, 3(9), 705.
15 Li Z, Yao Y Y, Li B F, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 3192 (in Chinese).
李钊, 姚赢赢, 李博飞, 等. 中国有色金属学报, 2021, 31(11), 3192.
16 Pour N, Gofer Y, Major D T, et al. Journal of the American Chemical Society, 2011, 133(16), 6270.
17 Yang L L, Yang C R, Chen Y W, et al. ACS Applied Materials & Interfaces, 2021, 13(26), 30712.
18 Li Z Y, Diemant T, Meng Z, et al. ACS Applied Materials & Interfaces, 2021, 13(28), 33123.
19 Nam K W, Kim S, Lee S. Nano Letters, 2015, 15(6), 4071.
20 Mao M L, Gao T, Hou S Y, et al. Chemical Society Reviews, 2018, 47(23), 8804.
21 Song J, Noked M, Gillette E. Physical Chemistry Chemical Physics, 2015, 17(7), 5256.
22 Fu Q, Sarapulova A, Trouillet V, et al. Journal of the American Chemical Society, 2019, 141(6), 2305.
23 Yoo H D, Shterenberg I, Gofer Y, et al. Energy & Environmental Science, 2013, 6(8), 2265.
24 Niu J Z, Zhang Z H, Aurbach D. Advanced Energy Materials, 2020, 10(23), 2000697.
25 Liu H, Cheng X B, Jin Z H, et al. EnergyChem, 2020, 1(1), 100003.
26 Xiao J. Science, 2019, 366(6464), 426.
27 Gao X W, Zhou Y N, Han D Z, et al. Joule, 2020, 4(9), 1864.
28 Liu X, Du A B, Guo Z Y, et al. Advanced Materials, 2022, 34(31), 2201886.
29 Davidson R, Verma A, Santos D. ACS Energy Letters, 2018, 4(2), 375.
30 Arthur T S, Singh N, Matsui M. Electrochemistry Communications, 2016, 16(1), 103.
31 Shao Y, Gu M, Li X, et al. Nano Letters, 2014, 14(1), 255.
32 Murgia F, Stievano L, Monconduit L, et al. Journal of Materials Chemistry A, 2015, 3(32), 16478.
33 Singh N, Arthur T S, Ling C, et al. Chemical Communications, 2013, 49(2), 149.
34 Murgia F, Weldekidan E T, Stievano L, et al. Electrochemistry Communications, 2015, 60, 56.
35 Nguyen G T H, Nguyen D T, Song S W. Advanced Materials Interfaces, 2018, 5(22), 14168.
36 Xia X H, Chao D L, Zhang Y Q, et al. Nano Today, 2014, 9(6), 785.
37 Li G Z, Huang B, Pan Z F, et al. Energy & Environmental Science, 2019, 12(7), 2030.
38 Li D J, Yuan Y, Liu J W, et al. Journal of Magnesium and Alloys, 2020, 8(4), 963.
39 Novák P, Imhof R, Haas O. Electrochimica Acta, 1999, 45(1-2), 351.
40 Cao Y, Ahmai S, Ebadi A G, et al. Inorganic Chemistry Communications, 2021, 133, 108888.
41 Ling C, Mizuno F. Physical Chemistry Chemical Physics, 2014, 16(22), 10419.
42 Vessally E, Alkorta I, Ahmadi S, et al. RSC Advances, 2019, 9(2), 853.
43 Cen Y, Dong J R, Zhu T T, et al. Electrochimica Acta, 2021, 397, 139260.
44 Wu N, Lyu Y C, Xiao R J, et al. NPG Asia Materials, 2014, 6, e120.
45 Peled E. Journal of the Electrochemical Society, 1979, 126(12), 2047.
46 Li B, Masse R, Liu C F, et al. Energy Storage Materials, 2019, 22, 96.
47 Liang Z M, Ban C M. Angewandte Chemie International Edition, 2021, 60(20), 11036.
48 Son S B, Gao T, Harvey S P, et al. Nature Chemistry, 2018, 10(5), 532.
49 Li X G, Gao T, Han F D, et al. Advanced Energy Materials, 2018, 8(7), 1701728.
50 Li Y Q, Zuo P J, Li R N, et al. ACS Applied Materials & Interfaces, 2018, 13(21), 24565.
51 Zhang J H, Guan X Z, Lv R J, et al. Energy Storage Materials, 2020, 26, 408.
52 Hassoun J, Scrosati B. Advanced Materials, 2010, 22(45), 5198.
53 Anuara N K, Adnana S B R S, Mohamed N S. Ceramics International, 2014, 40(8), 13719.
54 Knauth P. Solid State Ionics, 2009, 180(14-16), 911.
55 Wang T T, Zhao X D, Liu F F, et al. Journal of Energy Chemistry, 2021, 59, 608.
56 Sheha E, El-Mansy M K. Journal of Power Sources, 2008, 185(2), 1509.
57 Perumal P, Abhilash K P, Sivaraj P, et al. Materials Research Bulletin, 2019, 118, 110490.
[1] 毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
[2] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[3] 胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
[4] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[5] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[6] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[7] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[8] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[9] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[10] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[11] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[12] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[13] 王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
[14] 马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
[15] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed