Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 22050331-7    https://doi.org/10.11896/cldb.22050331
  高分子与聚合物基复合材料 |
氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响
胡时光1,2, 郭鹏凯2, 钱韫娴2, 张光照3, 王军3, 邓永红3,*, 王朝阳1,*
1 华南理工大学材料科学研究所,广州 510640
2 深圳新宙邦科技股份有限公司,广东 深圳 518118
3 南方科技大学材料科学与工程系/创新创业学院,广东 深圳 518055
Effect of Fluorinated Linear Carbonate on the Performance of High-voltage LiNi0.5Co0.2Mn0.3O2/Artificial Graphite Pouch Cells
HU Shiguang1,2, GUO Pengkai2, QIAN Yunxian2, ZHANG Guangzhao3, WANG Jun3, DENG Yonghong3,*, WANG Chaoyang1,*
1 Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
2 Shenzhen Capchem Technology Co., Ltd., Shenzhen 518118, Guangdong, China
3 Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 17981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 LiNi0.5Co0.2Mn0.3O2正极材料因能量密度高、循环稳定性好及安全性高而被认为是最有前途的高能量密度锂离子电池正极材料之一。然而,传统的常规碳酸酯基电解液的耐氧化性较差,导致LiNi0.5Co0.2Mn0.3O2正极材料在高电压条件下的容量快速衰减。在氟代碳酸乙烯酯(FEC)的基础上,研究了氟代线性碳酸酯(如二(2,2,2-三氟乙基)碳酸酯(TFEC)及甲基(2,2,2-三氟乙基)碳酸酯(MTFEC))替代碳酸二乙酯(DEC)在高电压下的循环稳定性。电化学测试结果表明,TFEC、MTFEC替代DEC后,4.5 V LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池45 ℃循环700圈后容量保持率分别从45.5%提高到72.5%、81.6%。线性扫描伏安法(LSV)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)及电感耦合等离子原子发射光谱(ICP-OES)研究表明,与DEC相比,TFEC及MTFEC具有更优异的高电压耐氧化性,能够明显抑制电解液在高电压正极表面的氧化分解,有效保护正负极材料界面稳定性及抑制正极材料过渡金属离子溶出对负极固体电解质界面(SEI)膜的破坏。氟代线性碳酸酯作为电解液溶剂在高电压锂离子电池领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡时光
郭鹏凯
钱韫娴
张光照
王军
邓永红
王朝阳
关键词:  三元层状氧化物  高电压电解液  二(2,2,2-三氟乙基)碳酸酯(TFEC)  甲基(2,2,2-三氟乙基)碳酸酯(MTFEC)    
Abstract: LiNi0.5Co0.2Mn0.3O2 cathode material is considered as one of the most promising cathode materials for high energy density lithium ion battery due to its high energy density, good cycling stability and high safety. However, LiNi0.5Co0.2Mn0.3O2 cathode material suffers from rapid capacity decay under high-voltage conditions due to the poor oxidation resistance of conventional carbonate-based electrolytes. Based on fluoroethylene carbonate (FEC), the cycle stability of fluorinated linear carbonates such as bis(2,2,2-trifluoroethyl) carbonate (TFEC) and methyl (2,2,2-trifluoroethyl) carbonate (MTFEC) replacing diethyl carbonate (DEC) were studied under high voltage. Electrochemical test results showed that the capacity retention of 4.5 V LiNi0.5Co0.2Mn0.3O2/artificial graphite pouch cells increased from 45.5% to 72.5% and 81.6% after 700 cycles at 45 ℃ after TFEC and MTFEC replaced DEC. Linear sweep voltammetry (LSV), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Raman spectroscopy (Raman) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) studies proved that TFEC and MTFEC had better oxidation resistance at high voltage than DEC. They could obviously inhibit the oxidation decomposition of electrolyte on the surface of the high-voltage cathode, effectively protect the interface stability of cathode and anode materials, and mitigate the damage of solid electrolyte interphase (SEI) film caused by the dissolution of transition metal ions from cathode materials. Fluorinated linear carbonates as electrolyte solvents are of great promise in the application of high-voltage lithium ion batteries.
Key words:  ternary layered oxides    high-voltage electrolytes    bis(2,2,2-trifluoroethyl) carbonate (TFEC)    methyl (2,2,2-trifluoroethyl) carbonate (MTFEC)
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TM911.3  
基金资助: 广东省重点领域研发计划(2020B090919001);广东省科技计划项目(2021A0505110001);国家自然科学基金(22078144)
通讯作者:  *邓永红,南方科技大学教授、博士研究生导师。1990年6月于湘潭大学取得化学工程学士学位,2000年6月于华南理工大学取得材料学硕士学位,2003年于清华大学取得材料科学与工程博士学位,曾于美国劳伦斯伯克利国家实验室、华南理工大学等研究机构任博士后、副教授、教授等职,2016年全职加入南方科技大学。目前主要从事锂离子电池电解质与固态电池等方面的研究工作。发表论文200余篇,包括Energy & Environmental Science、Advanced Materials、Advanced Energy Materials、Nature Communications、Nano Letters等,申请发明专利80余项。yhdeng08@163.com
王朝阳,华南理工大学教授、博士研究生导师。1995年6月于华中科技大学应用化学专业本科毕业,1998年6月于中国科学院长春应用化学研究所高分子物理与化学专业硕士毕业,2001年6月于华南理工大学材料学专业博士毕业。目前主要从事锂离子电池电解质、粘结剂与固态电池等方面的研究工作。发表论文200余篇,包括Advanced Materials、Angewandte Chemie International Edition、Nano Energy、Energy Storage Materials等。zhywang@scut.edu.cn   
作者简介:  胡时光,2007年6月于吉首大学取得化学专业学士学位,2010年6月于湘潭大学取得物理化学专业硕士学位。现为华南理工大学材料科学与工程学院博士研究生,在王朝阳教授的指导下进行研究。目前主要研究领域为锂离子电池电解液功能材料。
引用本文:    
胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
HU Shiguang, GUO Pengkai, QIAN Yunxian, ZHANG Guangzhao, WANG Jun, DENG Yonghong, WANG Chaoyang. Effect of Fluorinated Linear Carbonate on the Performance of High-voltage LiNi0.5Co0.2Mn0.3O2/Artificial Graphite Pouch Cells. Materials Reports, 2023, 37(8): 22050331-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050331  或          http://www.mater-rep.com/CN/Y2023/V37/I8/22050331
1 Dunn B, Kamath H, Tarascon J. Science, 2011, 334, 928.
2 Armand M, Tarascon J M. Nature, 2008, 451, 652.
3 Xu K. Chemical Reviews, 2004, 104, 4303.
4 Lu Z, MacNeil D D, Dahn J R. Electrochemical and Solid-State Letters, 2001, 4, A200.
5 Hong P, Xu M, Chen D, et al. Journal of the Electrochemical Society, 2017, 164, A137.
6 Guo J, Dong D, Wang J, et al. Advanced Functional Materials, 2021, 31, 2102546.
7 Casimir A, Zhang H, Ogoke O, et al. Nano Energy, 2016, 27, 359.
8 Ma L, Nie M, Xia J, et al. Journal of Power Sources, 2016, 327, 145.
9 Su Y, Cui S, Zhuo Z, et al. ACS Applied Materials & Interfaces, 2015, 7, 25105.
10 Yang S, Wang X, Yang X, et al. Journal of Solid State Electrochemistry, 2012, 16, 2823.
11 Lee B R, Noh H J, Myung S T, et al. Journal of the Electrochemical So-ciety, 2011, 158, A180.
12 Ellis B L, Lee K T, Nazar L F. Chemistry of Materials, 2010, 22(3), 691.
13 Jung S K, Gwon H, Hong J, et al. Advanced Energy Materials, 2014, 4, 1300787.
14 Tan S, Ji Y J, Zhang Z R, et al. ChemPhysChem, 2014, 15(10), 1956.
15 Lin F, Markus I M, Nordlund D, et al. Nature Communications, 2014, 5, 3529.
16 Wang D, Li X, Wang Z, et al. Electrochimica Acta, 2016, 188, 48.
17 Lu L, Han X, Li J, et al. Journal of Power Sources, 2013, 226, 272.
18 Xu K. Chemical Reviews, 2014, 114, 11503.
19 Haregewoin A M, Wotango, A S, Hwang B J. Energy & Environmental Science, 2016, 9, 1955.
20 Yu X, Manthiram A. Energy & Environmental Science, 2018, 11, 527.
21 Liao X L, Huang Q M, Mai S W, et al. Journal of Power Sources, 2014, 272, 501.
22 Han J G, Lee S J, Lee J, et al. ACS Applied Materials & Interfaces, 2015, 7, 8319.
23 Huang W N, Xing L D, Wang Y T, et al. Journal of Power Sources, 2014, 267, 560.
24 Wu Z L, Li S G, Zheng Y Z, et al. Journal of the Electrochemical Society, 2018, 165(11), A2792.
25 Lee H, Choi S, Choi S, et al. Electrochemistry Communications, 2007, 9(4), 801.
26 Madec L, Petibon R, Xia J, et al. Journal of the Electrochemical Society, 2015, 162(14), A2635.
27 Kang Y, Wang J, Du L, et al. ACS Applied Energy Materials, 2020, 3, 9989.
28 Markevich E, Salitra S, Fridman K, et al. Langmuir, 2014, 30, 7414.
29 Wang L, Ma Y, Qu Y, et al. Electrochimica Acta, 2016, 191, 8.
30 Im J, Lee J, Ryou M H, et al. Journal of the Electrochemical Society, 2017, 164(1), A6381.
31 Hu L, Zhang Z, Amine K. Electrochemistry Communications, 2013, 35, 76.
[1] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[2] 薛景元, 侯博, 莫岩, 曹博凯, 陈大明, 李德, 陈永. PVDF-HFP基凝胶电解质用于LiNi0.5Co0.2Mn0.3O2三元正极锂离子电池*[J]. 《材料导报》期刊社, 2017, 31(12): 6-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed